por jeferson_justo135 » Qua Jan 14, 2015 21:17
Olá pessoal! Gostaria que alguém me ajudasse a entender esse problema, não estou conseguindo encontrar os valores para montar a equação para calcular a integral dupla:
- Anexos
-

-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por Russman » Qui Jan 15, 2015 02:35
Primeiramente, identifique a curva e qual a forma de simetria.
A curva é uma circunferência de raio

centrada na origem. Portanto, a forma de simetria é polar. Assim, o mais indicado é utilizar coordenadas polares!
A lei de transformação é


Daí, da curva

(circunferência centrada na origem) você obtém

.
Todos os ponto compreendidos a direita pela reta

representam, no nosso sistema de coordenadas,

de modo que

a norte representam

e a esquerda de

representam

.
Assim, a integral deve ser efetuada de

e

.
A função

a ser integrada será substituída por

e o elemento de área

.
Logo,

.
Por outro lado, você pode também integrar em

e

pois a integral

é perfeitamente calculável via substituição.
Em ambos casos eu calculei

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jeferson_justo135 » Seg Jan 19, 2015 16:49
Olá amigo obrigado pelo retorno!
Agora eu entendi o conceito da questão acima, como montar, definir os valores. Porém não estou conseguindo entender como você chegou a esse resultado via substituição, você pode me explicar por favor? Ainda não domino essa matéria e estou estudando por conta.
Muito obrigado.
-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por Russman » Ter Jan 20, 2015 05:49
Na integral

faça a substituição

. Daí, como

então,

.
Como estamos avaliando uma região onde a função

é positiva, então

e , daí,

que é muito simples.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jeferson_justo135 » Seg Fev 09, 2015 12:16
Olá amigo, obrigado!
Você pode por favor demonstrar pra mim essa resolução para chegar nesse resultado final que me disse? Estou precisando fazer esse exercício de integral trigonométrica porém o único apoio que tenho é o seu nesse fórum...por favor...
-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por Russman » Seg Fev 09, 2015 12:21
Qual integral?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jeferson_justo135 » Seg Fev 09, 2015 13:05
Essa amigo :

, fiz de várias maneiras porém não consigo desenvolver, não consigo chegar a esse resultado, esse é o problema amigo...
-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por Russman » Seg Fev 09, 2015 15:22
Um erro de digitação no post anterior. Segue abaixo a correção.
Na integral

faça a substituição

. Daí, como

então,

.
Como estamos avaliando uma região onde a função

é positiva, então

e , daí,

que é muito simples.
Como

e

então

e

. Assim,

Agora basta multiplicar por 5.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jeferson_justo135 » Seg Fev 09, 2015 17:07
Nossa amigo você me ajudou muito!
Agradeço por toda atenção!
-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral dupla ƒƒ] área de região
por ricardosanto » Sex Nov 02, 2012 12:05
- 1 Respostas
- 1709 Exibições
- Última mensagem por young_jedi

Sex Nov 02, 2012 17:12
Cálculo: Limites, Derivadas e Integrais
-
- Integral iterada - Região de integração
por Cleyson007 » Sex Abr 13, 2012 23:40
- 9 Respostas
- 3896 Exibições
- Última mensagem por Cleyson007

Dom Abr 15, 2012 18:17
Cálculo: Limites, Derivadas e Integrais
-
- Integral iterada e Região de integração
por Cleyson007 » Sáb Abr 14, 2012 11:21
- 1 Respostas
- 1203 Exibições
- Última mensagem por LuizAquino

Sáb Abr 14, 2012 12:10
Cálculo: Limites, Derivadas e Integrais
-
- Integral iterada e região de integração
por Cleyson007 » Qua Abr 18, 2012 10:59
- 3 Respostas
- 2177 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 23:15
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL DUPLA] Área do conjunto de integração
por Matemagica » Sáb Dez 14, 2013 05:31
- 2 Respostas
- 2510 Exibições
- Última mensagem por Russman

Sáb Dez 14, 2013 23:51
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.