• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular o volume usando integrais duplas

Calcular o volume usando integrais duplas

Mensagempor Fernandobertolaccini » Dom Jan 11, 2015 17:35

Calcular o volume do sólido limitado no 1º octante pelo cilindro x²+y²=16 e pelo plano z = 4x .

Resp: 256/3


Não estou conseguindo montar esta integral



Obrigado !
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Calcular o volume usando integrais duplas

Mensagempor Russman » Dom Jan 11, 2015 20:34

Calcularemos o volume da região limitada no 1° octante de modo que 0 \leq x \leq 4.

Os valore de y variam de acordo com a curva x^2 + y^2 = 16 e, portanto, já q estamos no 1° octante, y=\sqrt{16-x^2}.

Finalmente, os valores de z são tais que 0 \leq z \leq 4x.

Assim, integre

\int_{0}^{4} \int_{5}^{\sqrt{16-x^2}} \int_{0}^{4x} \ dz \ dy \ dx
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Calcular o volume usando integrais duplas

Mensagempor Fernandobertolaccini » Seg Jan 12, 2015 10:29

Russman escreveu:Calcularemos o volume da região limitada no 1° octante de modo que 0 \leq x \leq 4.

Os valore de y variam de acordo com a curva x^2 + y^2 = 16 e, portanto, já q estamos no 1° octante, y=\sqrt{16-x^2}.

Finalmente, os valores de z são tais que 0 \leq z \leq 4x.

Assim, integre

\int_{0}^{4} \int_{5}^{\sqrt{16-x^2}} \int_{0}^{4x} \ dz \ dy \ dx


Ok, mas com qual número ou função que começarei a integração?
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Calcular o volume usando integrais duplas

Mensagempor Russman » Seg Jan 12, 2015 16:24

O número 1.

A primeira integral é trivial.

\int_{0}^{4x} dz = z|_0^{4x} = 4x-0 = 4x

A segunda, como é com respeito a y, será da mesma forma.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.