por Bruna_Ferreira » Seg Jan 05, 2015 16:18
Como eu consigo resolver esse exercício???
Existe um grupo G, de ordem 4, com geradores x e y tais que x^2=y^2=e xy=yx. Determine todos os subgrupos de G. Mostre que G={e, x, y, xy}.
-
Bruna_Ferreira
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Jan 05, 2015 16:01
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Matemática
- Andamento: cursando
por adauto martins » Sex Jan 09, 2015 16:05
G e um grupo abeliano isomorfo a

,e nao isomorfo a

(prove como exercicio),pois
![x.y=y.x...\left[x \right]=\left[y \right]= x.y=y.x...\left[x \right]=\left[y \right]=](/latexrender/pictures/99eb78b12b08c4810379193c04ddc518.png)
{

}={

}...logo <G>={

}


(prove como exercicio)...
sejam

,o q. e possivel pois

e

sao abelianos,G por hipotese...entao

={

}={

}={e,x,y,xy}
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Teoria de grupos
por Luiz Augusto Prado » Seg Mai 30, 2011 21:37
- 1 Respostas
- 1305 Exibições
- Última mensagem por Luiz Augusto Prado

Ter Mai 31, 2011 19:21
Álgebra Elementar
-
- [Teoria dos Grupos] Derivar Teorema
por Imscatman » Qua Fev 19, 2014 18:46
- 1 Respostas
- 1069 Exibições
- Última mensagem por Imscatman

Qui Fev 20, 2014 00:11
Lógica
-
- Demonstrações
por anamendes » Sáb Abr 28, 2012 13:02
- 1 Respostas
- 1127 Exibições
- Última mensagem por LuizAquino

Sáb Abr 28, 2012 14:29
Trigonometria
-
- [complexos] demonstrações
por alentejana » Ter Mai 22, 2012 16:22
- 7 Respostas
- 3283 Exibições
- Última mensagem por joaofonseca

Ter Mai 22, 2012 20:25
Números Complexos
-
- Demonstrações Duvidas
por Razoli » Qui Ago 08, 2013 22:35
- 1 Respostas
- 1041 Exibições
- Última mensagem por e8group

Sex Ago 09, 2013 10:23
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.