• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Exponencial

Equação Exponencial

Mensagempor matheus36000 » Seg Dez 22, 2014 11:33

Olá pessoal estou com dúvida em um exercício .... Alguém pode verificar onde errei ? Agradeço !!

UFSC - {2}^{2x+1}.-3.{2}^{x+2}=32
{2}^{2x}.2.(-).3{2}^{x}.4=32
{2}^{2x}.(-).3.{2}^{x}=4

Substituindo {2}^{x}=Y

{y}^{2}-3y-4=0
Fazendo a operação de Bhaskara Obtemos

{y}^{'}=1
{y}^{"}=4

Então : Substituindo {2}^{x}=Y
{2}^{x}=1
{2}^{x}={2}^{0}
X=0

OU

{2}^{x}=Y
{2}^{x}=4
{2}^{x}={2}^{2}
X=2


A Resposta do é x=3 ... Em qual Parte errei ?
matheus36000
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Dez 21, 2014 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Ensino Médio
Andamento: cursando

Re: Equação Exponencial

Mensagempor nakagumahissao » Seg Dez 22, 2014 17:16

Houve um erro da segunda para a terceira linha. Você precisaria dividir tudo por 2 e aí ficaria no final com y^2 - 6y - 16 = 0 e daí chegará na solução esperada.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Equação Exponencial

Mensagempor matheus36000 » Ter Dez 23, 2014 09:24

nakagumahissao escreveu:Houve um erro da segunda para a terceira linha. Você precisaria dividir tudo por 2 e aí ficaria no final com y^2 - 6y - 16 = 0 e daí chegará na solução esperada.


Vlw cara .... pensei que poderia fazer o inverso das operações passando o número interessado para no outro lado no caso 2 e 12 dividindo o 32. Obrigado por esclarecer
matheus36000
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Dez 21, 2014 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Ensino Médio
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: