por Fabio Wanderley » Sáb Dez 06, 2014 14:51
Boa tarde!
Alguém poderia mostrar como se chegou a essa igualdade? Não a entendi. É uma passagem de um exercício de funções de duas variáveis aleatórias.
![\int_{-\infty}^{\infty}\left[\frac{d}{dz}\int_{-\infty}^{z-x}f_{XY}(x,y)dy\right]dx=\int_{-\infty}^{\infty}f_{XY}(x,z-x)dx \int_{-\infty}^{\infty}\left[\frac{d}{dz}\int_{-\infty}^{z-x}f_{XY}(x,y)dy\right]dx=\int_{-\infty}^{\infty}f_{XY}(x,z-x)dx](/latexrender/pictures/eaeeab1ab797ff823bcd4fccb45baf44.png)
Obrigado!
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
por Fabio Wanderley » Ter Dez 09, 2014 21:45
Consegui falar com um professor. Vou deixar aqui a explicação:
"A igualdade é verdadeira devido ao Teorema Fundamental do Cálculo. Quando se deriva uma integral e a variável de derivação é o limite superior da integral, o resultado é o integrando avaliado nesse ponto."
Depois revisei o conteúdo num livro de Cálculo I. Posto aqui em simbologia matemática a explicação do professor:
Teorema Fundamental do Cálculo:
Seja f contínua em [a,b] e

. Então F é derivável e F'(x) = f(x).
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
por adauto martins » Qua Dez 10, 2014 14:51
meu caro fabio,
o q. esta dificultando aqui e o limite inferior da prim. integral...

,pois podemos fazer como se segue:
I=

,regra de leibinitz...
![I=\int_{-\infty}^{z-x}\partial F(x,y)=F(x,y)[-\infty,z-x]=F(x,z-x)-F(x,-\infty) I=\int_{-\infty}^{z-x}\partial F(x,y)=F(x,y)[-\infty,z-x]=F(x,z-x)-F(x,-\infty)](/latexrender/pictures/96ce2e4b496bf5c88bc5bc1d418fd5db.png)
,sem uma definiçao de F(x,y) nada podemos concluir com

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Fabio Wanderley » Qua Dez 10, 2014 20:31
Adauto, pelo que entendi, você está utilizando a seguinte explicação do teorema fundamental do cálculo:
Se G é tal que G'(x) = f(x) para
![x\in\left[a, \right b] x\in\left[a, \right b]](/latexrender/pictures/18ec34837b9a94e30aab70ad4a837bda.png)
, então

Observe que o integrando e o intervalo de integração são diferentes da definição que usei.
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
por adauto martins » Qua Dez 10, 2014 21:28
ai meu caro fabio,
claro tbem,nao tem como nao usar o teorema fundamental do calculo,mas ai usei a regra de leibnitz,mas cometi um erro ai,por displicencia(de sempre!)...
a regra de lebnitz p/funçoes de 2 variaveis eh:

,desde de q. F(x,y)seja continua e diferenciavel em (a,b)...qto ao exercicio e o erro...

,meu erro foi

,mas persiste o problema do limite p/

vamos a exposiçao...z=u(x,y) continua e diferencial em (a,b)...logo


,


![I=\int_{u(-\infty}^{z-x}(\partial F).(\partial y/\partial u)=\int_{-\infty}^{z-x}(\partial F(x,y))=F(x,y)[-\infty,z-x]=F(x,z-x)-F(x,-\infty) I=\int_{u(-\infty}^{z-x}(\partial F).(\partial y/\partial u)=\int_{-\infty}^{z-x}(\partial F(x,y))=F(x,y)[-\infty,z-x]=F(x,z-x)-F(x,-\infty)](/latexrender/pictures/1232d771317899eb18bcc77fe9adf72b.png)
,q.recai na situaçao anterior...para q.

,F tem q. ser uma funçao tipo

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Com duas variáveis e derivada mista
por leticiaeverson » Dom Abr 22, 2018 00:39
- 3 Respostas
- 12954 Exibições
- Última mensagem por Gebe

Dom Abr 22, 2018 17:11
Cálculo: Limites, Derivadas e Integrais
-
- Função de duas variáveis
por lilianers » Qua Ago 21, 2013 19:37
- 1 Respostas
- 2263 Exibições
- Última mensagem por Renato_RJ

Qui Ago 22, 2013 12:46
Funções
-
- [Dúvida]Gráficos de funções com duas variáveis.
por Santa Lucci » Dom Mar 13, 2011 16:58
- 2 Respostas
- 2212 Exibições
- Última mensagem por Santa Lucci

Dom Mar 13, 2011 21:55
Cálculo: Limites, Derivadas e Integrais
-
- Continuidade função de duas variáveis
por ormatos » Sáb Abr 07, 2018 17:47
- 0 Respostas
- 4517 Exibições
- Última mensagem por ormatos

Sáb Abr 07, 2018 17:47
Cálculo: Limites, Derivadas e Integrais
-
- Função com mais de duas varíaveis
por LucieneHolanda » Dom Jun 03, 2012 19:18
- 4 Respostas
- 5354 Exibições
- Última mensagem por LucieneHolanda

Ter Jun 05, 2012 15:30
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.