por PORTER » Qua Dez 10, 2014 09:52
olá pessoal, gostaria de derivar até a terceira ordem, gostaria de saber se a primeira ordem nesse caso, ja esta certa, se não tiver como faço, se tiver como derivar a segunda e a terceira ordem, minha duvida é quando devo parar de derivar e como derivar a segunda e a terceira ordem.
f(x) = {6x}^{5} - {2x}^{4} + {10x}^{3} - {7x}^{2} + 250x + 144
f'(x) = {30x}^{4} - {8x}^{3} + {30x}^{2} - 14x
-
PORTER
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Nov 04, 2014 17:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: informatica
- Andamento: cursando
por Cleyson007 » Qua Dez 10, 2014 10:38
Sua derivada de primeira ordem está correta
Agora é só continuar derivando. Acompanhe:
Derivada de segunda ordem: 120x³ - 24x² + 60x - 14
Derivada de terceira ordem: 360 x² - 48x + 60
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- dúvida, derivar seno e cosseno até a terceira ordem
por PORTER » Qui Dez 11, 2014 08:10
- 1 Respostas
- 1348 Exibições
- Última mensagem por adauto martins

Sex Dez 12, 2014 11:34
Cálculo: Limites, Derivadas e Integrais
-
- duvida para derivar a segunda ordem
por PORTER » Ter Nov 04, 2014 21:37
- 3 Respostas
- 3252 Exibições
- Última mensagem por Russman

Qua Nov 05, 2014 11:32
Cálculo: Limites, Derivadas e Integrais
-
- Como derivar esta função: (x^3 + 7x^2 -8).(2x^-3 + x^-4)
por fabio carvalho » Dom Mai 29, 2016 01:50
- 1 Respostas
- 2791 Exibições
- Última mensagem por nakagumahissao

Dom Mai 29, 2016 21:43
Cálculo: Limites, Derivadas e Integrais
-
- como calcular determinantes de ordem elevada
por marcos chaves » Seg Set 03, 2012 18:18
- 4 Respostas
- 3991 Exibições
- Última mensagem por LuizAquino

Seg Set 03, 2012 22:36
Matrizes e Determinantes
-
- Terceira fase OBM 2010
por victoreis1 » Dom Out 24, 2010 16:14
- 4 Respostas
- 3544 Exibições
- Última mensagem por al-mahed

Sáb Dez 11, 2010 21:55
Desafios Difíceis
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.