por troziinho » Sex Nov 28, 2014 23:40
Boa noite, estava tentando resolver este exercicio, porém me surgiu uma dúvida, sabemos que o cos(1/x) não existe quando x tende a zero, então como eu poderia fazer para tornar essa função continua no intervalo pedido? E quanto a derivabilidade?

-
troziinho
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Nov 28, 2014 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Prod
- Andamento: cursando
por adauto martins » Dom Nov 30, 2014 11:43

,faz-se

...logo

,entao

...

...logo nao existe o limite em 0 e a funçao nao e continua em 0...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] Ajuda com limites no infinito e continuidade
por umbrorz » Dom Abr 15, 2012 00:54
- 3 Respostas
- 4562 Exibições
- Última mensagem por umbrorz

Seg Abr 16, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
-
- Continuidade/Limites
por joaofonseca » Sáb Dez 03, 2011 19:40
- 3 Respostas
- 2017 Exibições
- Última mensagem por LuizAquino

Sáb Dez 03, 2011 21:27
Cálculo: Limites, Derivadas e Integrais
-
- Limites e continuidade
por Marcos_Mecatronica » Sáb Abr 27, 2013 19:38
- 2 Respostas
- 1624 Exibições
- Última mensagem por e8group

Dom Abr 28, 2013 21:32
Cálculo: Limites, Derivadas e Integrais
-
- Limites(Continuidade)
por brunotorres123-abc » Sáb Mar 21, 2015 19:35
- 0 Respostas
- 1680 Exibições
- Última mensagem por brunotorres123-abc

Sáb Mar 21, 2015 19:35
Cálculo: Limites, Derivadas e Integrais
-
- Limites e Continuidade
por elisafrombrazil » Qui Jan 19, 2017 11:11
- 3 Respostas
- 5289 Exibições
- Última mensagem por adauto martins

Sex Jan 20, 2017 16:24
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.