• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Fatoração] O que estou fazendo de errado?

[Fatoração] O que estou fazendo de errado?

Mensagempor giancarlo_vanitelli » Ter Nov 25, 2014 16:22

Estudei todos os produtos notáveis, estudei o trinômio de Stewin, estudei um pouco como fatorar através do método de completar quadrados, porém mesmo assim há inúmeras fatorações que não faço ideia de como começar a resolver, parece que o que aprendi não é suficiente e tem algo a mais que sempre fica faltando nessa matéria (fatoração). Segue minhas tentativas de resolução de dois exercícios, peço por gentileza que apontem o que estou fazendo de errado.

Ex1) x²-4a²+6x+12a
= x(x+6)-4a(a-3)
=(x+6)(x-4)(a-3) < Minha resposta

Resposta informada no gabarito> (x+2a)(x-2a+6)

Ex2) a²-4b²+8a+12b+7
= a(a+8)-4b(b-3)+7
= (a+8)(b-3)(a-4b+7) < Minha resposta

Resposta informada no gabarito> (a+2b+1)(a-2b+7)

O que eu devo estudar para resolver este tipo de fatoração?

Desde já agradeço.
giancarlo_vanitelli
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Nov 22, 2014 16:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: cursando

Re: [Fatoração] O que estou fazendo de errado?

Mensagempor nakagumahissao » Qua Nov 26, 2014 11:58

Exemplo 1:

x^{2}-4a^{2}+6x+12a

Nesta primeira, podemos observar a presença de x ao quadrado e 'a' ao quadrado. Percebemos também que esta primeira parte:

x^{2}-4a^{2}

se parece muito com o formato:

(x + u)(x - u) = x^{2} - u^{2}

Assim, para sabermos o valor de 'u' acima, bastará que façamos:

u^{2} = 4a^{2} \Rightarrow u = \pm \sqrt[]{4a^{2}} = \pm |2a| = \pm 2a

Logo, para esta primeira parte:

x^{2} - 4a^{2} = (x - 2a)(x+2a)

Para a segunda parte,

6x+12a = 6(x + 2a)

Juntando tudo, temos:

(x - 2a)(x+2a) + 6(x + 2a)

Como (x + 2a) aparece duas vezes, podemos colocá-lo em evidência para termos:

(x+2a)[(x - 2a) + 6] = (x+2a)(x - 2a + 6)

Que é a resposta desejada para este primeiro exemplo.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Fatoração] O que estou fazendo de errado?

Mensagempor nakagumahissao » Qua Nov 26, 2014 16:14

Para a situação do

a^{2} - 4b^{2} + 8a + 12b + 7

Note que:
a^{2} - 4b^{2}  = (a-2b)(a+2b)

e que 7 somente poderá ser produzido por 7 vezes 1. Assim

a^{2} - 4b^{2} + 8a + 12b + 7 = (a - 2b + 1)(a+2b+7)

ou

a^{2} - 4b^{2} + 8a + 12b + 7 = (a+2b+1)(a - 2b + 7)

tanto faz.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Fatoração] O que estou fazendo de errado?

Mensagempor giancarlo_vanitelli » Qua Nov 26, 2014 18:36

Obrigado Nakagumahissao,
há algum método a ser utilizado nesse tipo de fatoração (2° caso) ou o mesmo apenas pode resolvido através da logica msm? Tenho bastante dificuldade neste tipo de fatoração.
giancarlo_vanitelli
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Nov 22, 2014 16:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: cursando

Re: [Fatoração] O que estou fazendo de errado?

Mensagempor nakagumahissao » Qua Nov 26, 2014 19:28

Não veja uma forma mais fácil a não ser um pouco de criatividade em cada situação dessas.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D