• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada Dy/Dx] Questão

[Derivada Dy/Dx] Questão

Mensagempor iceman » Sáb Nov 22, 2014 13:44

Sex^2+xy+y^2=1,encontre \frac{Dy}{Dx}

Agradeço pela ajuda! :)
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Derivada Dy/Dx] Questão

Mensagempor adauto martins » Sáb Nov 22, 2014 15:37

{y}^{2}+x.y+({x}^{2}-1)=0...y=-x+\sqrt[]{4-3x}/2,ou y=-x-\sqrt[]{4-3x}/2
1)dy/dx=-1+((3/4)/\sqrt[]{4-3x}))=(-4\sqrt[]{4-3x}+3)/(\sqrt[]{4-3x})
2)dy/dx=-1-((3/4)/\sqrt[]{4-3x}))=(-4\sqrt[]{4-3x}-3)/(\sqrt[]{4-3x})
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Derivada Dy/Dx] Questão

Mensagempor iceman » Sáb Nov 22, 2014 16:08

adauto martins escreveu:{y}^{2}+x.y+({x}^{2}-1)=0...y=-x+\sqrt[]{4-3x}/2,ou y=-x-\sqrt[]{4-3x}/2
1)dy/dx=-1+((3/4)/\sqrt[]{4-3x}))=(-4\sqrt[]{4-3x}+3)/(\sqrt[]{4-3x})
2)dy/dx=-1-((3/4)/\sqrt[]{4-3x}))=(-4\sqrt[]{4-3x}-3)/(\sqrt[]{4-3x})


entendi nada
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Derivada Dy/Dx] Questão

Mensagempor Cleyson007 » Sáb Nov 22, 2014 18:51

Boa tarde iceman!

Utilizando derivação implícita. Veja:

2x+y+x\left(\frac{dy}{dx} \right)+2y\left(\frac{dy}{dx}\right)=0

Colocando o \left(\frac{dy}{dx}\right) em evidência, temos:

\left(\frac{dy}{dx}\right)(x+2y)=-2x-y

Logo, \left(\frac{dy}{dx}\right)=\frac{-2x-y}{x+2y}

Comente qualquer dúvida :y:
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [Derivada Dy/Dx] Questão

Mensagempor adauto martins » Dom Nov 23, 2014 12:36

a soluçao do cleyson e a correta...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.