por iceman » Sáb Nov 22, 2014 13:44
Se

,encontre

Agradeço pela ajuda!

-
iceman
- Usuário Parceiro

-
- Mensagens: 70
- Registrado em: Qui Mai 10, 2012 18:35
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por adauto martins » Sáb Nov 22, 2014 15:37
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por iceman » Sáb Nov 22, 2014 16:08
adauto martins escreveu:
...
![y=-x+\sqrt[]{4-3x}/2 y=-x+\sqrt[]{4-3x}/2](/latexrender/pictures/5fabb065f0c86a1fa3e5b894cc6742e3.png)
,ou
![y=-x-\sqrt[]{4-3x}/2 y=-x-\sqrt[]{4-3x}/2](/latexrender/pictures/d4b61b2ae6721c85c5b1288484799ed9.png)
1)
![dy/dx=-1+((3/4)/\sqrt[]{4-3x}))=(-4\sqrt[]{4-3x}+3)/(\sqrt[]{4-3x}) dy/dx=-1+((3/4)/\sqrt[]{4-3x}))=(-4\sqrt[]{4-3x}+3)/(\sqrt[]{4-3x})](/latexrender/pictures/7fcb8cfd52f582cc2e762888fd0fd805.png)
2)
![dy/dx=-1-((3/4)/\sqrt[]{4-3x}))=(-4\sqrt[]{4-3x}-3)/(\sqrt[]{4-3x}) dy/dx=-1-((3/4)/\sqrt[]{4-3x}))=(-4\sqrt[]{4-3x}-3)/(\sqrt[]{4-3x})](/latexrender/pictures/6551e45b643f3441e063b42990fd3998.png)
entendi nada
-
iceman
- Usuário Parceiro

-
- Mensagens: 70
- Registrado em: Qui Mai 10, 2012 18:35
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Cleyson007 » Sáb Nov 22, 2014 18:51
Boa tarde iceman!
Utilizando derivação implícita. Veja:

Colocando o

em evidência, temos:

Logo,

Comente qualquer dúvida

-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por adauto martins » Dom Nov 23, 2014 12:36
a soluçao do cleyson e a correta...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada - Questão
por iceman » Dom Set 16, 2012 16:37
- 3 Respostas
- 1590 Exibições
- Última mensagem por iceman

Dom Set 16, 2012 19:59
Cálculo: Limites, Derivadas e Integrais
-
- Re: Derivada - Questão
por iceman » Dom Set 16, 2012 23:06
- 2 Respostas
- 1224 Exibições
- Última mensagem por Russman

Seg Set 17, 2012 11:24
Cálculo: Limites, Derivadas e Integrais
-
- Derivada - Questão
por iceman » Ter Set 18, 2012 18:56
- 3 Respostas
- 1747 Exibições
- Última mensagem por Renato_RJ

Ter Set 18, 2012 19:24
Cálculo: Limites, Derivadas e Integrais
-
- [DUVIDA] Questão de Derivada.
por Jefferson_mcz » Sex Mai 17, 2013 00:21
- 0 Respostas
- 1679 Exibições
- Última mensagem por Jefferson_mcz

Sex Mai 17, 2013 00:21
Cálculo: Limites, Derivadas e Integrais
-
- Derivada-questão da prova
por johnatta » Ter Jun 16, 2015 13:47
- 1 Respostas
- 2139 Exibições
- Última mensagem por DanielFerreira

Sáb Jun 27, 2015 15:57
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.