• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo I] Exercício - Máximos e Mínimos

[Cálculo I] Exercício - Máximos e Mínimos

Mensagempor Pessoa Estranha » Dom Nov 16, 2014 16:53

Olá, pessoal! Boa Tarde!

Preciso de ajuda para resolver o seguinte exercício: "Um fio de comprimento L é cortado em dois pedaços, um dos quais formará um círculo e o outro, um quadrado. Como deve ser cortado o fio para que a soma das áreas do círculo e do quadrado seja máxima?"

Minha resolução:

Seja x o pedaço de L destinado ao círculo. Seja y, o do quadrado. Temos x + y = L. Sabemos que a área de um círculo é dada por: \pi {r}^{2}, onde r é o raio. Como temos o comprimento x, vem que 2 \pi r = x \rightarrow r = \frac{x}{2 \pi}. Logo, {A}_{c} = \frac{{x}^{2}}{4 \pi} é a área do círculo. Da mesma forma, temos que a área do quadrado é dada por: {A}_{q} = {a}^{2}, onde a é a medida do lado do quadrado. Mas, sabemos que 4a = y \rightarrow a = \frac{y}{4}. Logo, {A}_{q} = \frac{{y}^{2}}{16}. Para trabalharmos com uma variável, segue: x + y = L \rightarrow x = L - y \rightarrow {x}^{2} = {L}^{2} - 2Ly + {y}^{2}. Substituindo, vem que: {A}_{c} = \frac{{L}^{2} - 2Ly + {y}^{2}}{4 \pi}. Somando as duas áreas, temos: {A}_{c} + {A}_{q} = \frac{{L}^{2} - 2Ly + {y}^{2}}{4 \pi} + \frac{{y}^{2}}{16} \rightarrow {A}_{c} + {A}_{q} =  \frac{{y}^{2}(4+ \pi) - 8Ly + 4{L}^{2}}{16 \pi}. Derivando, temos: \frac{(4+ \pi)y - 4L}{3 \pi}. Daí, fazendo um estudo do sinal, não encontrei ponto de máximo, e, sim, de mínimo.

Por favor, preciso de ajuda! Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.