• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] usando método da substituição

[Integral] usando método da substituição

Mensagempor neoreload » Sex Nov 14, 2014 02:43

Pessoal como resolve essa:

Calcular integral usando método da substituição simples por U: \int \frac{x}{x^{4}+3}dx
Resposta: \frac{\sqrt{3}}{6}arctg\frac{x^{2}\sqrt{3}}{3}+C

Tentei fazer e me perdi todo. Porque eu comecei fazendo assim:
U=x^{4}+3
dU=4x^{3}dx
dx= \frac{dU}{4x^{3}}
Ai substituí e ficou: \int \frac{x}{U}\frac{dU}{4x^{3}}, coloquei os números para fora e cortei um X, dai ficou: \frac{1}{4}\int \frac{dU}{Ux^{2}}, onde achei que o du/u daria lnu, então finalmente ficou \frac{lnU}{4x^{2}}, ai coloquei o valor de U no lugar e cheguei no resultado: \frac{ln(x^{4}+3)}{4x^{2}}, o que é bem diferente da resposta que tem na apostila. Agradeço quem puder deixar o passo a passo bem detalhado, pq estou perdido mesmo, e pelo jeito sem saber como fazer :(
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)