por GuiFerronato » Qui Nov 13, 2014 14:52
1) Determinar a equação da circunferência de centro na intersecção das retas (r) x + y = 4 e (s) 2x - y = 5 e tangencia o eixo das ordenadas.
Obs: Eu já fiz o sistema com as duas equações para achar o centro, que é C(3,1). O eixo das ordenadas, o que eu saiba é P(0,y). Como que eu acho o raio ?
2) As retas (s) 2x + y + 2 = o e (f) x - 2 = 0 intercepta a circunferência x² + y² - 4x + 4y - 1 = 0 nos pontos A, B, C e D . Determine a área do quadrilátero formada por estes pontos.
Obs : Essa eu não sei por onde começar. Como procedo ?
3) Determinar a equação da circunferência inscrita no quadrado de coordenadas A(3,3) , B(7,3), C(3,7) e D(7,7).
Obs : Tenho que pegar a distância de um ponto ao outro para encontrar o raio ? E depois ?
4) O raio de uma circunf. é a distância do ponto A(-1, 4) à reta (s) 3x - 4y + 10 = 0 , e o seu centro, é o ponto de intersecção da reta (r) -2x + 3y - 6 = 0 com o eixo das abscissas. Determina a equação desta circunferência.
Obs: O raio pega na fórmula da Distância de um ponto a reta. Só o centro que não entendi.
Obrigado quem puder me ajudar, agradeço !
-
GuiFerronato
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Nov 13, 2014 14:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Computação
- Andamento: cursando
por adauto martins » Qui Nov 13, 2014 15:27
1)a intersecçao das retas e a soluçao do sistema x+y=4,2x-y=5,cuja soluçao eh x=3,y=1,q. eh o centro da circunferencia...como a circunferencia tangencia o eixo y(oredenadas) o raio eh igual a 3...logo a equaçao sera:
![({x-3})^{2}+({y-1})^{2}=\sqrt[]{3} ({x-3})^{2}+({y-1})^{2}=\sqrt[]{3}](/latexrender/pictures/7bd3093b7482c460058a814807f414ba.png)
...
3)o quadrado tem lado igual a 4,logo o raio r=2...os pontos medios,onde a circunferencia tangencia os lados sao:(5,3),(5,7),
(7,5),(3,5),logo o centro do quadrado e o centro da circunferencia e sera (5,5),entao a equaçao sera:
![({x-5})^{2}+({y-5})^{2}=\sqrt[]{2} ({x-5})^{2}+({y-5})^{2}=\sqrt[]{2}](/latexrender/pictures/7bfef14d0d60915793bf33c12683040a.png)
...os outros 2,resolvo depois ou alguem do ste resolve...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por GuiFerronato » Qui Nov 13, 2014 15:43
Já ajudou muito, valeu!
-
GuiFerronato
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Nov 13, 2014 14:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Computação
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- exercicios geometria analitica
por gidelson araujo » Qua Jul 23, 2014 01:15
- 0 Respostas
- 1407 Exibições
- Última mensagem por gidelson araujo

Qua Jul 23, 2014 01:15
Geometria Analítica
-
- [Geometria Analitica] Duvidas em alguns exercicios
por Gustavo Reis » Qui Jun 27, 2013 13:50
- 1 Respostas
- 2209 Exibições
- Última mensagem por DanielFerreira

Sáb Jun 29, 2013 10:22
Geometria Analítica
-
- geometria no plano e espaço - exercicios ajuda
por mmartins » Seg Mai 03, 2010 08:22
- 0 Respostas
- 1809 Exibições
- Última mensagem por mmartins

Seg Mai 03, 2010 08:22
Geometria Espacial
-
- Geometria Analítica
por maysa » Ter Abr 14, 2009 10:35
- 1 Respostas
- 7688 Exibições
- Última mensagem por Marcampucio

Ter Abr 14, 2009 15:52
Geometria Analítica
-
- GEOMETRIA ANALITICA
por GABRIELA » Ter Set 29, 2009 17:20
- 3 Respostas
- 5449 Exibições
- Última mensagem por GABRIELA

Qua Set 30, 2009 16:49
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.