por eu_dick1 » Ter Nov 11, 2014 23:42
Existe uma maneira fácil de encontrar raízes de polinômios com termos ausente? Por exemplo,

, tentei pôr o

em evidência, mas não ajuda muito. O que devo fazer ?
-
eu_dick1
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sáb Mai 17, 2014 01:05
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ensino Médio
- Andamento: formado
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [polinômio]Relações de Girard + raízes de polinômio
por matano2104 » Qui Set 05, 2013 17:02
- 1 Respostas
- 7032 Exibições
- Última mensagem por young_jedi

Qui Set 05, 2013 17:57
Polinômios
-
- Raízes de polinômio
por ARCS » Ter Jan 25, 2011 21:46
- 1 Respostas
- 2993 Exibições
- Última mensagem por Renato_RJ

Ter Jan 25, 2011 22:33
Álgebra Elementar
-
- Raizes de um polinomio de grau 3
por Lilavet » Qua Abr 28, 2010 09:42
- 2 Respostas
- 5577 Exibições
- Última mensagem por DeMoNaZ

Qua Abr 28, 2010 18:25
Polinômios
-
- Fatoração e raízes de um polinômio
por pablohas » Qua Dez 08, 2010 21:26
- 2 Respostas
- 3640 Exibições
- Última mensagem por Elcioschin

Sex Dez 10, 2010 22:05
Polinômios
-
- Determinar as raízes de um polinômio
por nanasouza123 » Sex Set 22, 2017 21:09
- 1 Respostas
- 4829 Exibições
- Última mensagem por DanielFerreira

Sex Nov 20, 2020 19:07
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.