• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Não seria 8M - 20

Não seria 8M - 20

Mensagempor Evaldo » Ter Jan 05, 2010 13:03

Um passageiro recebe de uma companhia aérea a seguinte informação em relação à bagagem a ser despachada: por passageiros, é permitido despachar gratuitamente uma bagagem de até 20kg ; para qualquer quantidade que ultrapasse os 20kg , será paga a quantia de R$ 8,00 por quilo excedente. Sendo P o valor pago pelo despacho da bagagem, em reais, e M a massa da bagagem, em kg, em que M > 20, então:

Gabarito: P=8(M-20)
Há homens que lutam um dia, e são bons;
Há outros que lutam um ano, e são melhores;
Há aqueles que lutam muitos anos, e são muito bons;
Porém há os que lutam toda a vida
Estes são os imprescindíveis
Bertold Brecht
Evaldo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Out 14, 2009 13:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: formado

Re: Não seria 8M - 20

Mensagempor MarceloFantini » Ter Jan 05, 2010 14:46

Boa tarde Evaldo!

Vamos montar uma pequena tabela, atribuindo valores para a massa da bagagem e vendo qual o preço a pagar, sabendo que a massa tem que ser maior que 20:

\begin{tabular}{|c|c|}
\hline
\mbox{Preco} & Massa \\
\hline
8 & 21 \\
\hline
16 & 22 \\
\hline
24 & 23 \\
\hline
32 & 24 \\
\hline
\end{tabular}

Perceba que, para cada aumento na unidade da massa, o preço aumenta de 8 reais. Então, a função é algo do tipo f(x)=8x, onde x é a massa. Usando as letras que ele pediu, fica:

P(M) = 8(M-20). Note que é fácil de provar que está é realmente a função, pois se a massa for de 20 kg (tecnicamente não poderia pois o enunciado disse explicitamente que é maior) o preço é 0, ou seja, gratuito.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}