• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Reduza a expressão dada em um único logaritmo

Reduza a expressão dada em um único logaritmo

Mensagempor pereirajoaojr » Dom Nov 02, 2014 17:25

Reduza a expressão dada em um único logaritmo:
log9 x + log3 6 - 3log9 z
Me ajudem por favor
pereirajoaojr
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Nov 02, 2014 17:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Reduza a expressão dada em um único logaritmo

Mensagempor adauto martins » Seg Nov 03, 2014 17:43

\log_{9}^{x}+\log_{3}^{6}-3(\log_{9}^{z})=(\log_{3}^{x})/(\log_{3}^{9})+(\log_{3}^{3}+(\log_{3}^{2}))-3.(2(\log_{3}^{3})+\log_{3}^{z}))=(\log_{3}^{x}/3)+(1+\log_{3}^{2})-(6+3(\log_{3}^{z}))=(\log_{3}^{x}/3)-3\log_{3}^{z}+\log_{3}^{2}-5=\log_{3}^{2(\sqrt[3]{x})/(({z}^{3})(\sqrt[5]{3}))}...costumo errar em contas,mas o racionio e esse...confere ai
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Reduza a expressão dada em um único logaritmo

Mensagempor pereirajoaojr » Ter Nov 04, 2014 01:32

No gabarito marca que a resposta é log9 (36x/z³), mas não consigo chegar nesse resultado.
pereirajoaojr
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Nov 02, 2014 17:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Reduza a expressão dada em um único logaritmo

Mensagempor Russman » Ter Nov 04, 2014 13:49

Primeiro reduza todos os logaritmos a mesma base. Lembre-se que 9=3^2 de modo que, segundo a identidade

\log _{a^2}x=\log_ax^{1/2}

temos \log_3 6 = \log_9 36.

Ainda, k \log_a x = \log_a x^k. Portanto, 3 \log_9 z = \log_9 z^3. Assim, sua expressão fica

\log_9 x + \log_9 36 - \log_9 z^3

que é, segundo as propriedades de soma e diferença de logaritmos,

\log_9 (\frac{36x}{z^3})
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59