• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação de Girard

Relação de Girard

Mensagempor SandraRB » Seg Nov 03, 2014 20:52

Por favor, não consigo resolver a situação abaixo. Não sei como aplicar as Relações de Girard nisso.
Dada a equação algébrica 3{x}^{3}-6{x}^{2}+3x-1=0 , as raízes são representadas por \alpha, \beta e \gamma. Calcule {\alpha}^{2}+{\beta}^{2}+{\gamma}^{2}
SandraRB
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 01, 2014 18:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Relação de Girard

Mensagempor Russman » Ter Nov 04, 2014 01:28

Escrevendo as raízes como x_1, x_2 e x_3 sabemos que
x_1+x_2+x_3 = -\frac{b}{a}

Ou seja, (x_1+x_2+x_3)^2 = \frac{b^2}{a^2}

de onde

x_1^2+x_2^2+x_3^2 + 2x_1x_2 + 2x_1x_3+2x_2x_3 =\frac{b^2}{a^2}

ou, já que x_1x_2 + x_1x_3 + x_2x_3 = \frac{c}{a},

(x_1^2+x_2^2+x_3^2) + 2*\frac{c}{a} = \frac{b^2}{a^2}

e, portanto,

x_1^2+x_2^2+x_3^2 = \frac{b^2}{a^2} - 2*\frac{c}{a}

Da equação, x_1^2+x_2^2+x_3^2 = 2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Relação de Girard

Mensagempor SandraRB » Ter Nov 04, 2014 19:47

Russman escreveu:Escrevendo as raízes como x_1, x_2 e x_3 sabemos que
x_1+x_2+x_3 = -\frac{b}{a}

Ou seja, (x_1+x_2+x_3)^2 = \frac{b^2}{a^2}

de onde

x_1^2+x_2^2+x_3^2 + 2x_1x_2 + 2x_1x_3+2x_2x_3 =\frac{b^2}{a^2}

ou, já que x_1x_2 + x_1x_3 + x_2x_3 = \frac{c}{a},

(x_1^2+x_2^2+x_3^2) + 2*\frac{c}{a} = \frac{b^2}{a^2}

e, portanto,

x_1^2+x_2^2+x_3^2 = \frac{b^2}{a^2} - 2*\frac{c}{a}

Da equação, x_1^2+x_2^2+x_3^2 = 2.


Muito Obrigada!
SandraRB
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 01, 2014 18:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.