• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações com incógnita no denominador

Equações com incógnita no denominador

Mensagempor raymondtfr » Sex Out 31, 2014 23:51

Olá, minha dúvida é com equações que possuem incógnitas no denominador. Eu não sei ao certo como tirar o MMC dos denominadores com incógnitas, e não tenho certeza em como usar os produtos notáveis nestas.

Eu estou com dificuldade, por exemplo, em entender como esta:
\frac{4}{{x}^{2}-1}=\frac{3}{x+1}-\frac{4}{3(x-1)}

Vem a se tornar esta:
12=9\left( x-1\right)-4\left(x+1 \right)

Eu estou sabendo determinar as condições de existências, para que os denominadores não sejam nulos, minha dificuldade mesmo é o uso de incóg. nos denominadores e o uso de produtos notáveis.
raymondtfr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Out 31, 2014 23:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equações com incógnita no denominador

Mensagempor young_jedi » Sáb Nov 01, 2014 12:01

neste caso veja que

x^2-1=(x-1)(x+1)

agora você tem que verificar em cada termo qual fator que existe nos outros termos e não esta presente neste

no caso de \frac{4}{(x+1)(x-1)} o fator que existe em um dos outros dois e não nele é o 3 portanto você multiplica a fração em cima e embaixo por 3

\frac{3.4}{3.(x-1)(x+1)}

no caso de \frac{3}{x+1} os fatore presente nos outros denominadores e nele não são 3 e (x-1) portanto você multiplica a fração em cima e embaixo por 3*(x-1)

\frac{3.3(x-1)}{3(x-1)(x+1)}

e por fim

\frac{4}{3(x-1)}=\frac{4.(x+1)}{3(x+1)(x-1)}

sendo assim a equação fica

\frac{3.4}{3.(x-1)(x+1)}=\frac{3.3(x-1)}{3(x-1)(x+1)}-\frac{4.(x+1)}{3(x+1)(x-1)}

como todos tem o mesmo denominador agora, você pode simplificar a equação para

3.4=3.3(x-1)-4(x+1)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Equações com incógnita no denominador

Mensagempor raymondtfr » Sáb Nov 01, 2014 12:47

Valeu :y: , agora eu entendi.
raymondtfr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Out 31, 2014 23:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.