• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema de Maximização

Problema de Maximização

Mensagempor Fernandobertolaccini » Ter Out 28, 2014 21:52

José comprou uma Smart TV nova, 4K, para assistir à Copa do Mundo. A TV tem uma altura de 0,5m e vai ser colocada a 4m de distância dos olhos de José, quando ele estiver sentado confortavelmente em seu sofá, xingando aqueles milionários que estão jogando vezes o que deveriam para ganhar a copa (? -> 0). Sabendo que os olhos de José, ao sentar-se, estão a 1,5m de altura do solo e num nível entre os bordos inferior e superior da TV, a que altura do solo deve ser colocada a TV para que o ângulo de visão de José seja máximo?
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Problema de Maximização

Mensagempor Russman » Qua Out 29, 2014 03:56

Olhando na figura fica claro que H=h+x, onde H é a altura da TV com relação ao solo e h a altura dos olhos da pessoa om relação ao mesmo.. Portanto, uma vez calculado x seremos capazes de calcular H. Assim, nossa busca será o de calcular o ângulo \alpha em função de x a fim de estudar a correspondente maximização.

É possível notar que \tan(\alpha + \theta) = \frac{t+x}{D} da mesma maneira que \tan(\theta) = \frac{x}{D}. Assim, como

\tan(a+b) = \frac{\tan(a) + \tan(b)}{1-\tan(a) \tan(b)}

então

\tan(\alpha + \theta) = \frac{\tan(\alpha) + \tan(\theta)}{1-\tan(\alpha) \tan(\theta)} \Rightarrow \frac{t+x}{D}  = \frac{\tan(\alpha)+ \frac{x}{D}}{1-\frac{x}{D}\tan(\alpha)}

A solução desta equação(que expressa o ângulo \alpha = \alpha(x)) é

\alpha(x) = \tan^{-1}\left ( \frac{Dt}{D^2-tx-x^2} \right )

Agora, sabemos que x extremiza \alpha(x) se \frac{\mathrm{d} }{\mathrm{d} x} \alpha(x) = 0. Assim, como \frac{\mathrm{d} }{\mathrm{d} x} \tan^{-1}(x) = \frac{1}{1+x^2} então, aplicando a regra da cadeia, vem que

\frac{\mathrm{d} }{\mathrm{d} x} \alpha(x) = \frac{\mathrm{d}\tan^{-1}(f(x)) }{\mathrm{d} f(x)} \frac{\mathrm{d}f }{\mathrm{d} x}

onde f(x) = \frac{Dt}{D^2-tx-x^2}.

Daí, \frac{\mathrm{d} }{\mathrm{d} x} \alpha(x)  = 0 implica em \frac{\mathrm{d}f }{\mathrm{d} x} = 0 já que \frac{\mathrm{d}\tan^{-1}(f(x)) }{\mathrm{d} f(x)} = \frac{1}{1+f^2} nunca se anula.

Agora, note que f(x) =\frac{ Dt}{p(x)} onde p(x) = D^2 - tx-x^2. Assim, para calcular a solução de \frac{\mathrm{d}f }{\mathrm{d} x} = 0 basta tomar

f(x)p(x) = Dt\Rightarrow \frac{\mathrm{d} }{\mathrm{d} x}\left ( f(x)p(x) \right ) = 0 \Rightarrow p(x)\frac{\mathrm{d} f(x)}{\mathrm{d} x} + f(x)\frac{\mathrm{d} p(x)}{\mathrm{d} x}=0\Rightarrow f(x)\frac{\mathrm{d} p(x)}{\mathrm{d} x} = 0

Como f(x) nunca se anula a solução vem com \frac{\mathrm{d} p(x)}{\mathrm{d} x} = 0. Ou seja,

-t-2x=0 \Rightarrow x=-\frac{t}{2}

O fato de x<0 mostra que a TV deve estar a uma altura menor do que a propria altura dos olhos do assistente.

Agora, a altura referente ao solo que a TV deve estar é H=x+h = h-\frac{t}{2} = 1,5-0,25=1,25 \mbox{ } m.

Em outras palavras, a TV deve situar-se sempre a uma altura equivalente a altura dos olhos do assistente menos metade do comprimento da própria TV. Note q a distância da TV ao assistente é irrelevante.
Anexos
2014-10-29 03.29.57.jpg
figura1
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.