por Paulo Perez » Sex Out 17, 2014 15:16
Bom dia, preciso de ajuda para resolver esta integral, ela é a integral resultante de outra integral a qual eu resolvi por parte, não sei como desenvolvê-la... quanto mais mecho nela, pior fica, se puderem me ajudar eu agradeço muito.
Obrigado!
![\int_{0}^{\pi}sen\theta\sqrt[2]{1 + cos\theta} d\theta \int_{0}^{\pi}sen\theta\sqrt[2]{1 + cos\theta} d\theta](/latexrender/pictures/b5a54c0497006b448b5b0267d2c500e5.png)
-
Paulo Perez
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Out 03, 2013 12:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por adauto martins » Sex Out 17, 2014 15:49
faz-se u=1+cos

,temos du=-sen

d

entao:
![\int_{0}^{\pi}((\sqrt[2]{u}(-du))=((-2/3){u}^{2/3}) \int_{0}^{\pi}((\sqrt[2]{u}(-du))=((-2/3){u}^{2/3})](/latexrender/pictures/288f96e62bafa016bc7cd0c0414575e0.png)
![\int_{0}^{\pi}(\sqrt[2]{u}(-du)=(-2/3){u}^{2/3}p/u(0),u(\pi)... \int_{0}^{\pi}(\sqrt[2]{u}(-du)=(-2/3){u}^{2/3}p/u(0),u(\pi)...](/latexrender/pictures/ddde57ba86ee423d4c7dc75129786bc2.png)
subt.nov u=1+cos

e calcula a expressao em 0e

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Sex Out 17, 2014 15:55
uma correçao eh

e nao

...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Paulo Perez » Sex Out 17, 2014 18:09
Puts cara, valeu ae, agr eu vi como sou burro de não ter visto isso... Muito Obrigado msm
-
Paulo Perez
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Out 03, 2013 12:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Area de uma superficie de revolução
por miumatos » Seg Jun 18, 2012 01:34
- 1 Respostas
- 1884 Exibições
- Última mensagem por LuizAquino

Ter Jun 19, 2012 11:05
Cálculo: Limites, Derivadas e Integrais
-
- Area de Superfície de Revolução
por ariclenesmelo » Seg Out 22, 2012 22:00
- 3 Respostas
- 4515 Exibições
- Última mensagem por young_jedi

Ter Out 23, 2012 11:37
Cálculo: Limites, Derivadas e Integrais
-
- Rotação-Superficie de Revolução
por DGM » Ter Dez 05, 2017 00:37
- 0 Respostas
- 1692 Exibições
- Última mensagem por DGM

Ter Dez 05, 2017 00:37
Geometria Analítica
-
- [Integral] Solido de Revolução
por Amandarbastos » Qui Nov 30, 2017 18:37
- 0 Respostas
- 3786 Exibições
- Última mensagem por Amandarbastos

Qui Nov 30, 2017 18:37
Cálculo: Limites, Derivadas e Integrais
-
- [Aplicação de Integral] Área de Revolução
por carlosce88 » Qua Out 26, 2016 22:40
- 0 Respostas
- 4973 Exibições
- Última mensagem por carlosce88

Qua Out 26, 2016 22:40
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.