• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Paridade de Funções] - Função Par, dúvida

[Paridade de Funções] - Função Par, dúvida

Mensagempor joseefreire » Sáb Out 04, 2014 21:30

Olá, estou com uma dúvida em um problema do ITA.

O Polinômio de grau 4
(a+2b+c){x}^{4}+(a+b+c){x}^{3}-(a-b){x}^{2}+(2a-b+c)x+2(a+c).
Com a,b,c \epsilon R, é uma função par. Então, a soma dos módulos de suas raízes é igual a

A)3+\sqrt[2]{3}
B)2+3\sqrt[2]{3}
C)2+\sqrt[2]{2}
D)1+2\sqrt[2]{2}
E)2+2\sqrt[2]{2}

Vi uma resolução deste exercício, e nela, os coeficientes dos monômios de grau ímpar foram igualados a zero pelo motivo
de o polinômio ser uma função par. Não entendi o porquê disso, alguém poderia me ajudar?
joseefreire
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Out 01, 2014 11:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Paridade de Funções] - Função Par, dúvida

Mensagempor e8group » Dom Out 05, 2014 01:25

" Vi uma resolução deste exercício, e nela, os coeficientes dos monômios de grau ímpar foram igualados a zero pelo motivo
de o polinômio ser uma função par. Não entendi o porquê disso, alguém poderia me ajudar? "

Nota : Uma função f : \mathbb{R} \mapsto  \mathbb{R} é ditar ser par ( respct . impar ) se f(x) = f(-x) para todo x (respct . -f(x) = f(-x) p/ todo x ) .

Seja p(x) qualquer polinômio , i.e,

p(x) = a_0 + a_1x + \hdots +  a_n x^n   =  \sum_{ i : \text{par}}   a_i x^i  +  \sum_{ i : \text{impar} }  a_i x^i
(a 1ª soma estende sobre todos índices pares compreendidos entre 0 e n e a 2ª sobre todos índices ímpares entre 0 e n ) .

Suponha p par , i.e , p(x) = p(-x) para todo x .Temos ,

p(-x) =  \sum_{ i : \text{par}}   a_i (-x)^i  +  \sum_{ i : \text{impar} }  a_i (-x)^i  =   \sum_{ i : \text{par}}   a_i x^i - \sum_{ i : \text{impar} }  a_i x^i , logo

2p(x) = p(x) + p(-x) =  \sum_{ i : \text{par}}   a_i x^i  +  \sum_{ i : \text{impar} }  a_i x^i + \sum_{ i : \text{par}}   a_i x^i - \sum_{ i : \text{impar} }  a_i x^i = 2  \sum_{ i : \text{par}}a_ix^i

e assim o p(x) se resume a soma de todos os termos a_i x^i com índice par compreendidos entre 0 e n .

Caso p for impar , de forma análoga verifica-se que p(x) se exprime como soma de todos os termos a_i x^i de índice 0 < i \leq n impar .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Paridade de Funções] - Função Par, dúvida

Mensagempor joseefreire » Dom Out 05, 2014 15:51

Obrigado caro Santhiago,

entendi a sua explicação e irei usa-la para resolver os próximos exercícios.
Forte Abraço!
joseefreire
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Out 01, 2014 11:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: