• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo Diferencial e Integral I] Derivada

[Cálculo Diferencial e Integral I] Derivada

Mensagempor Pessoa Estranha » Qui Set 25, 2014 13:03

Olá!

Preciso de ajuda para resolver o seguinte exercício:

"Obter a equação da reta tangente à curva y = \frac{{e}^{x} + {e}^{-x}}{2} em x = -2".

Minha resolução:

\frac{dy}{dx} = \frac{{e}^{x}(1-2{x}^{-2})}{4}

(y-{y}_{o}) = \frac{dy}{d{x}_{o}}(x-{x}_{o})

(y-{y}_{o}) = \frac{dy}{d{x}_{o}}(x-{x}_{o}) \rightarrow (y-f({x}_{o})) = \frac{{e}^{-2}(1-2{(-2)}^{-2})}{4}.(x - (-2)) \rightarrow (y - \frac{{e}^{-2} + {e}^{2}}{2}) = \frac{{e}^{-2}.(1-\frac{1}{2})}{4}.(x+2)

y = \frac{{e}^{-2}}{8}.(x+2) + \frac{{e}^{-2}+{e}^{2}}{2} \rightarrow y = \frac{{e}^{-2}(x+6) + 4{e}^{2}}{8}

Resposta do Livro:

y = \frac{({e}^{-2}-{e}^{2})x}{2} + \frac{3{e}^{-2}-{e}^{2}}{2}

Tentei fazer algumas manipulações algébricas para tentar chegar numa equivalência das expressões, mas não deu certo.

Por favor, podem me ajudar?

Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo Diferencial e Integral I] Derivada

Mensagempor DanielFerreira » Qui Set 25, 2014 21:57

Derivemos,

\\ y = \frac{e^x + e^{- x}}{2} \\\\\\ y = \frac{e^x + \frac{1}{e^x}}{2} \\\\\\ y' = \frac{\left( e^x + \frac{0 \cdot e^x - 1 \cdot e^x}{(e^x)^2} \right) \cdot 2 - \left( e^x + \frac{1}{e^x} \right) \cdot 0}{4} \\\\\\ y' = \frac{2 \cdot \left( e^x - \frac{1}{e^x} \right)}{4} \\\\\\ \boxed{y' = \frac{e^x - e^{- x}}{2}}


Sabemos que a equação da reta tangente... no ponto (p, f(p)) é dada por f(x) = f'(x) \cdot (x - p) + f(p)

\\ f'(x) = \lim_{x \rightarrow p} \frac{f(x) - f(p)}{x - p} \\\\\\ f(x) = f'(x) \cdot (x - p) + f(p) \\\\\\ f(x) = \left( \frac{e^2 - e^{- 2}}{2} \right) \cdot \left( x - 2 \right) + \frac{e^2 + e^{- 2}}{2} \\\\\\ f(x) = \left( \frac{e^2 - e^{- 2}}{2} \right) \cdot x + \left( \frac{e^2 - e^{- 2}}{2} \right) \cdot (- 2) + \frac{e^2 + e^{- 2}}{2} \\\\\\ f(x) = \left( \frac{e^2 - e^{- 2}}{2} \right) \cdot x + \left( \frac{-2e^2 + 2e^{- 2}}{2} \right) + \frac{e^2 + e^{- 2}}{2} \\\\\\ \boxed{\boxed{f(x) = \frac{(e^2 - e^{- 2})x}{2} + \frac{3e^{- 2} - e^2}{2}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Cálculo Diferencial e Integral I] Derivada

Mensagempor Pessoa Estranha » Sex Set 26, 2014 10:47

Olá! Muito Obrigada! Errei em alguma coisa na hora de derivar. Vou ver direitinho agora. Muito obrigada mesmo! :-D
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.