• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Álgebra Linear] A prova é amanhã!

[Álgebra Linear] A prova é amanhã!

Mensagempor Pessoa Estranha » Seg Set 08, 2014 18:42

Boa tarde, pessoal! Preciso de ajuda!

Determinar um vetor unitário do {\Re}^{3} que seja ortogonal a todos os vetores do subespaço W = \left[(1, 2, -1),(-1,0,2) \right].

Para fazermos isto, precisamos, primeiro, encontrar uma base ortonormal para W. Consegui encontrá-la através do Processo de Gram-Schmidt. Seja B essa base. Segue: B = \left(\frac{1}{\sqrt[]{6}}(1,2,-1), \frac{1}{\sqrt[]{14}} (-1,2, 3) \right). Daí, temos um resultado que garante-nos que v = u - <u, k1>k1 - <u, k2>k2 é o vetor ortogonal a todos os elementos de W, onde k1, k2 são os elementos da base B e, u é um vetor qualquer de W, u = (a, b, c), por exemplo. Porém, eu simplesmente não consigo chegar ao resultado! Obtive umas frações com numeradores e denominadores gigantes! Por favor, preciso muito de ajuda!!!!

Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Álgebra Linear] A prova é amanhã!

Mensagempor e8group » Qui Set 11, 2014 08:37

Outra forma de pensar usando conhecimentos da G.A .

Note que estamos trabalhando com um subespaço do \mathbb{R}^3 que é um plano que passa pela origem gerado pelos vetores v = (1,2,-1) ; u =(-1,0,2) .Pois bem , da G.A. sabemos que o produto vetorial entre u e v( u \times v) é ortogonal ao plano em questão , i.e, ele é ortogonal a todos vetores de W . E por fim concluímos que qualquer vetor que está na mesma direção de u \times v também é ortogonal a todos vetores de W . Assim , o vetor requerido será dado por

\frac{u\times v}{||u\times v||} ou -\frac{u\times v}{||u\times v||} . Fazendo as contas , vc tem que

u\times v = (4,-1,2) e || u\times v  || =\sqrt{21} ....
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Álgebra Linear] A prova é amanhã!

Mensagempor Pessoa Estranha » Sex Set 12, 2014 19:11

Agradeço a ajuda! :-D
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.