• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Mostrar que uma função satisfaz uma equação

[Derivada] Mostrar que uma função satisfaz uma equação

Mensagempor rodrigoboreli » Dom Set 07, 2014 00:52

Boa noite meus amigos, sou novato no forum, mas preciso muito da ajuda de vocês.
Consegui chegar até na metade deste exercício e gostaria da ajuda de vocês para termina-lo.

Ex. Mostrar que a função y = \frac{1}{1 + x + ln x} satisfaz a equação xy' = y (y ln x - 1).

Até onde consegui fazer:

y = y = 1 + {x}^{-1} + lnx

y' = \frac{-1}{{x}^{2}} +\frac{1}{x}

x.\left(\frac{-1}{{x}^{2}} + \frac{1}{x}\right)

= \frac{-x}{{x}^{2}}+1

={-x}^{-1} +1 isso tem que ser = y (y ln x - 1).

Depois disso eu empaquei e não consegui igualar com essa parte: y (y ln x - 1).

Por favor vejam se meu raciocínio esta certo, me ajudem!! preciso entregar isso no final da semana que vem, obrigado desde já!
rodrigoboreli
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Set 07, 2014 00:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)