Seja o R² definido por:
i) (x,y)+(s,t)=(x+s,y+t) tal que u=(x,y) e v=(s,t) pertencem ao R²
ii) *c(x,y)= (*cx, *cy) tal que *c pertence a R. E u e v pertencem ao R²
Prove que o R² é um espaço vetorial.
Solução:
As condições básicas para que se tenha um espaço vetorial é a soma entre 2 vetores pertencentes ao espaço deve pertencer ao espaço vetorial, assim como o produto de 2 vetores pertencentes também deve pertencer ao espaço vetorial. Então também deve-se ter satisfeitas as 4 condições da soma e as 4 condições da multiplicação de vetores.
A1, A2, A3, A4 e M1, M2, M3, M4 são satisfeitos.
---
Eu sei que o R² quando definido por i e ii é um espaço vetorial, mas como posso fazer uma prova matematicamente disto, teriam uma sugestão? Obrigado.

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)