• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por Frações Parciais

Integral por Frações Parciais

Mensagempor jeff_95 » Sex Ago 29, 2014 05:35

Alguém consegue resolver essa integral ?

\int \frac{cosh (t)}{sen^2(t)+senh^4(t)}dt

Uma dica que o livro dá é fazer uma substituição que resultará numa integral que pode ser resolvida através do método das frações parciais. Porém já tentei diversas substituições e em nenhuma obtive sucesso. Se alguém puder me dar uma luz :-D !!!
jeff_95
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Nov 16, 2013 19:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecânica
Andamento: cursando

Re: Integral por Frações Parciais

Mensagempor young_jedi » Sex Ago 29, 2014 15:34

no denominador o termo ao quadrado é mesmo um seno, não seria um senh (seno hiperbolico), ?
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Integral por Frações Parciais

Mensagempor jeff_95 » Sex Ago 29, 2014 23:01

Bom, no livro está seno. Também já pensei se tratar de um erro de digitação :-P
jeff_95
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Nov 16, 2013 19:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecânica
Andamento: cursando

Re: Integral por Frações Parciais

Mensagempor young_jedi » Sáb Ago 30, 2014 15:43

No livro contém as respostas, se sim agente ja consegue determinar se foi erro de digitação.
Confesso que se for realmente seno não tenho muitas idéias para resolve-la.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Integral por Frações Parciais

Mensagempor jeff_95 » Sáb Ago 30, 2014 16:34

Hehe o livro é o stewart, e o exercício é par, não tem a resposta :/
jeff_95
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Nov 16, 2013 19:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.