• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida

Dúvida

Mensagempor marinalcd » Qui Ago 14, 2014 23:07

Estou com dificuldade nessa questão. Podem me ajudar?
Seja A = [0,1) \cap (\Re\Q). Podemos dizer que A é um intervalo? Por quê? Inf=? sup=?
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Dúvida

Mensagempor e8group » Sex Ago 29, 2014 16:37

Dados a,b reais define-se o intervalo fechado

[a,b] := \{x \in \mathbb{R} ;   a \leq x\leq b \} e o aberto

(a,b) := \{x \in \mathbb{R} ;   a < x <b  \}

Sobre o exercício verifique-se que supremo do conjunto requerido é 1 e o ínfimo 0 . O segundo passo é mostrar que existe algum x real entre 0 e 1[mais precisamente x racional ] ,(i.e, ele pertence ao intervalo aberto (0,1) ) de modo que tal número não está no conjunto exposto .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?