• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações cartesianas e equações paramétricas

Equações cartesianas e equações paramétricas

Mensagempor Victor Mello » Sáb Ago 23, 2014 16:24

Boa tarde, eu estou tentando resolver uma questão que pedia para identificar a trajetória da partícula encontrando a equação cartesiana para ela a partir da equação paramétrica x=cos2t, y=sen2t, cujo intervalo de t varia de \left[0,\pi \right].

Pois bem, eu fiz uma substituição através de x^2+y^2=1 nas equações paramétricas. O problema foi na hora de identificar a trajetória da partícula: quando igualei t a 0, então x=1 e y=0. E quando igualei t a pi, o x também é igual a 1, e y também é zero, ou seja, a medida que aumento o t até fechar o intervalo, eu obtive o mesmo ponto que a partícula deve percorrer, ou seja, ele parte de um ponto, e depois ela volta para o mesmo ponto. E eu não tenho muita certeza se isso está correto ou não. Poderia alguém me explicar a lógica dessa questão? Enfim, quem puder, eu agradeço!

Abraço!
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Re: Equações cartesianas e equações paramétricas

Mensagempor Russman » Sáb Ago 23, 2014 18:29

Ta certo. A partícula descreve uma circunferência completa! A partícula parte do ponto (1,0) e, após descrever uma circunferência de raio 1 em torno da origem, retorna ao ponto (1,0).
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.