• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determine a e b

Determine a e b

Mensagempor jcmatematica » Seg Ago 04, 2014 22:52

Determine a e b para que -x³ + 2x² - ax + 2b seja divisível por x² - x + 1
jcmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Ter Jul 29, 2014 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: formado

Re: Determine a e b

Mensagempor Russman » Ter Ago 05, 2014 17:30

Para que um polinômio p(x) seja divisível por um outro q(x) é preciso que exista um polinômio s(x) tal que \forall \ x se verifique a identidade

p(x) = s(x) q(x)

No seu caso, p(x) é do 4° grau e q(x) do 3° grau. Assim, s(x) deve ser, necessariamente, do 1° grau!
Portanto, tome s(x) = kx+c, onde k e c são números reais tais que

-x^3 + 2x^2 -ax+2b = (kx+c)(x^2 - x +1)

Daí, desenvolvendo,

-x^3 + 2x^2 -ax+2b = kx^3 -kx^2 + kx + cx^2 - cx + c

e evocando a igualdade de polinômios* vem que

-1=k
-k+c = 2
k-c = -a
2b = c

Daí,

k=-1
c=1
a = 2
b = \frac{1}{2}

Verifique que

-x^3 + 2x^2 -2x+1 = -x^3 +x^2 -x + x^2 - x + 1

* A igualdade de polinômios afirma que , dados dois polinômios finitos
p_1(x) = \sum_{i=0}^{N_1}a_ix^i e p_2(x)\sum_{i=0}^{N_2} b_ix^i

a igualdade p_1(x) = p_2(x) somente verificar-se-a se N_1 = N_2(os pol. têm o mesmo gau.) e para cada i de 0 a N(N_1 = N_2= N) tem-se a_i = b_i.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59