Olá!
Para resolver este exercício, acho que há várias maneiras, mas eu pensei na seguinte, talvez não muito esclarecedora.
Dias da semana: S1 T Q1 Q2 S2 (vamos representar assim);
1º caso - três dias consecutivos. Podemos ter: S1TQ1, TQ1Q2, Q1Q2S2 (3 possibilidades);
2º caso - dois dias consecutivos (Segunda, Terça e um dia qualquer). Podemos ter: S1TQ2, S1TS2 (2 possibilidades);
3º caso - dois dias consecutivos (Terça, Quarta e um dia qualquer). Podemos ter: TQ1S2 (1 possibilidade);
4º caso - dois dias consecutivos (Quarta, Quinta e um dia qualquer). Podemos ter: S1Q1Q2 (1 possibilidade);
5º caso - dois dias consecutivos (Quinta, Sexta e um dia qualquer). Podemos ter: S1Q2S2, TQ2S2 (2 possibilidades);
6º caso - dias não consecutivos (observe que só há uma opção: Segunda, Quarta e Sexta). Podemos ter: S1Q1S2 (1 possibilidade);
Logo, 3 + 2 + 1 + 1 + 2 + 1 = 10 possibilidades de plantão na semana. Como há somente uma opção para dias não consecutivos, segue a resposta. Entendeu? Pode perguntar. Escrevi um tanto superficialmente só para expor a ideia. Na verdade, deve haver outras formas de se resolver isto. Com a ideia, talvez você possa pensar noutras maneiras de resolver a questão.
