por Carolminera » Seg Jul 21, 2014 18:13
Seja f: R -> R uma função diferenciável em um ponto a E R(reais). Calcule, em termos de f ' (a), o limite:
![\lim_{x -> 0} \frac{f(x)- f(a)}{\sqrt[]{x} - \sqrt[]{a}} \lim_{x -> 0} \frac{f(x)- f(a)}{\sqrt[]{x} - \sqrt[]{a}}](/latexrender/pictures/36f9bb2a2b9d469cf23a3bbe7f8fe54d.png)
Alguém pode me ajudar?
Obrigada desde já!
-
Carolminera
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Qua Jul 02, 2014 15:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física Médica
- Andamento: cursando
por e8group » Ter Jul 22, 2014 01:48
Dica :
Multiplique em cima e em baixo por

e dps utilize regra operatória limites .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Carolminera » Ter Jul 22, 2014 10:41
Poderia demonstrar como fica? É que eu realmente não estou entendendo como fazer a operação, o exercício para mim está meio confuso.
-
Carolminera
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Qua Jul 02, 2014 15:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física Médica
- Andamento: cursando
por e8group » Ter Jul 22, 2014 11:23
Primeiro traduzimos a hipótese na linguagem dos limites ...
Dizer que f é diferenciável em um ponto

implica em dizer que o limite

existe e uma notação para designar esta afirmação é

.
Agora note que desejamos computar o limite

. Nosso objetivo é escrever

como

(tal que

existe ) para que possamos aplicar a regra operatória do produto (vide livros de cálculo 1) .
Utilizando que

, nós temos que

(estar implícito a positividade de

) (*) .
Como sugerir ... ( no primeiro membro estamos multiplicando por uma quantidade não nula e dividindo pela mesma quantidade , estamos trabalhando com x mt próximo de a , mas differente de a ; no segundo membro usamos o resultado marcado por (*) ) o limite desejado equivale a calcular o seguinte limite

.
Tendo em conta que ambos limites abaixo existem ,

(hipótese )

, então podemos aplicar a regra operatória do produto para obter

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6471 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4550 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4842 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7027 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4260 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.