por billhc » Ter Dez 22, 2009 16:35
Peguei esse exercício de uma prova da UNIFEI:
O cubo da figura abaixo tem arestas medindo 5cm. Nele está inscrita uma pirâmide ABCDE, onde B eD são os pontos médios das arestas do cubo. Calcule o volume do sólido obtido quando retiramos a pirâmide do cubo.

Minhas tentativas:
(Volume obtido) = (volume cubo) - (volume da pirâmide)
(volume obtido) = (5*5*5) - ([b.h]/3)
Achei a base da pirâmide fazendo o seguinte
(base pirâmide) = (Area face cubo) - 2.(area dos triangulos retangulos)
(base pirâmide) = (5*5) - 2.((2,5*5)/2)
(base pirâmide) = 25 - 12,5
(base pirâmide) = 12,5
Agora como eu vo achar a altura da pirâmide sendo que ela nao é regular?
Eu tentei usar a altura da pirâmide como 5cm, mas o resultado não bate com o gabarito...
Resposta do gabarito: 625/6 cm³
-
billhc
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Dez 22, 2009 16:09
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia
- Andamento: cursando
por Luiz Augusto Prado » Ter Dez 22, 2009 17:16
tá certo! h=5
só que vc tem que subtrair o volume da piramide do volume do cubo que é 125.
12,5*h/3 = 20,833333333
125-20,833333333 = 625/6
-

Luiz Augusto Prado
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sex Nov 27, 2009 18:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por billhc » Ter Dez 22, 2009 18:19
brigadão!
-
billhc
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Dez 22, 2009 16:09
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- help( quero achar altura em tronco de piramide)
por tou_atoladinha » Seg Jun 09, 2008 17:06
- 2 Respostas
- 5623 Exibições
- Última mensagem por tou_atoladinha

Ter Jun 10, 2008 13:38
Geometria Espacial
-
- Achar a altura de uma Pirâmide que inscreve-se um circulo
por Rose » Seg Jun 16, 2008 11:35
- 5 Respostas
- 10168 Exibições
- Última mensagem por admin

Qua Jun 18, 2008 17:42
Geometria Espacial
-
- [Geometria Espacial - Pirâmide] Pirâmide de Cartolina
por raimundoocjr » Qui Ago 02, 2012 22:13
- 1 Respostas
- 2606 Exibições
- Última mensagem por MarceloFantini

Qui Ago 02, 2012 23:04
Geometria Espacial
-
- altura da torre
por qscvrdxz » Ter Jun 02, 2009 19:21
- 2 Respostas
- 3383 Exibições
- Última mensagem por qscvrdxz

Ter Jun 02, 2009 23:15
Trigonometria
-
- ALTURA DO UMBIGO
por maria cleide » Dom Mai 22, 2011 19:27
- 1 Respostas
- 4156 Exibições
- Última mensagem por LuizAquino

Dom Mai 22, 2011 20:45
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.