• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite de função trigonométrica

Limite de função trigonométrica

Mensagempor Carolminera » Qui Jul 17, 2014 15:44

Alguém ajuda?
Estou com dificuldade para resolver o seguinte limite trigonométrico:


\lim_{x ->  -2}       sen(2+x).cos(1/2+x) 
                       / x+2



Obrigada!
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando

Re: Limite de função trigonométrica

Mensagempor DanielFerreira » Sáb Jul 19, 2014 21:09

Carol, repare que a restrição do domínio é quando x é igual a zero. Uma vez que, x vale (- 2) podemos substituí-lo...

Veja:

\\ \lim_{x \rightarrow - 2} \left[ \frac{\sin (2 + x) \cdot \cos (\frac{1}{2} + x)}{x} + 2 \right] = \\\\\\ \frac{\sin (2 - 2) \cdot \cos (\frac{1}{2} - 2)}{- 2} + 2 = \\\\\\ \frac{\sin 0 \cdot \cos (\frac{- 3}{2})}{- 2} + 2 = \\\\\\ \frac{0}{- 2} + 2 = \\\\ 0 + 2 = \\\\ \boxed{2}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Limite de função trigonométrica

Mensagempor Carolminera » Dom Jul 20, 2014 12:25

Mas colocando -2 no lugar do x do denominador, não zeraria o denominador? E isso não daria uma indeterminação?
Porque o denominador é x+2, iria zerar... Estava pensando em fazer troca de variável..
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando

Re: Limite de função trigonométrica

Mensagempor DanielFerreira » Dom Jul 20, 2014 12:30

Ah! Equivocadamente considerei \lim_{x \rightarrow - 2} \left[ \frac{\sin (2 + x) \cdot \cos (\frac{1}{2} + x)}{x} + 2 \right] quando deveria ter feito \lim_{x \rightarrow - 2} \left[ \frac{\sin (2 + x) \cdot \cos (\frac{1}{2 + x})}{x + 2} \right]
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Limite de função trigonométrica

Mensagempor Carolminera » Dom Jul 20, 2014 21:52

Então, mas e como ficaria? A troca de variável daria certo?
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: