por Maira » Sáb Dez 19, 2009 16:47
Alguém poderia me ajudar na questão de funções da UFJF 2009?
É a questão 11 desta prova:
http://siga.ufjf.br/index.php?module=ve ... va1a_2.pdfAguardo respostas, obrigada!
-
Maira
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Dez 19, 2009 16:40
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Sáb Dez 19, 2009 18:45
Como os pontos

e

são obtidos a partir da intersecção do gráfico

com

, vamos obter as ordenadas substituindo em

.

e

. Logo, tem-se:


Aplicando logaritmo na base

dos dois lados (uma vez que

e

pelo enunciado), temos:


Resolvendo-se o sistema, encontramos que

. Logo:

Ou, como está na alternativa
E:

.
Acredito ser essa a resposta.
Um abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Molina » Sáb Dez 19, 2009 19:06
Boa tarde, Maira.
Vamos ver se posso ajudar.
O dado mais importante que ele nos fornece é onde esses pontos P e Q estão na abscissa (2 e 4).
Ou seja, sabemos que em

e

os gráficos se cruzam.
Temos então que

e

. Mas

e

é fácil de achar:



Com isso, temos que

e

. Vamos usar este resultado agora:


(equação 1)
(equação 2)Dividindo a equação 2 pela equação 1, obtemos:



E isso nos dá o seguinte logaritmo:

Por isso eu assinalaria a alternativa e).

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Maira » Sáb Dez 19, 2009 19:27
Obrigada professores, estou numa maratona da ufjf aqui,
muito obrigada
-
Maira
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Dez 19, 2009 16:40
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão UFJF
por Guilherme Carvalho » Sex Mai 13, 2011 12:19
- 1 Respostas
- 1440 Exibições
- Última mensagem por MarceloFantini

Sex Mai 13, 2011 15:54
Trigonometria
-
- Questão UFJF
por Guilherme Carvalho » Ter Mai 31, 2011 15:42
- 1 Respostas
- 1991 Exibições
- Última mensagem por Claudin

Ter Mai 31, 2011 18:04
Funções
-
- [Função Exponencial] UFJF - MG
por SCHOOLGIRL+T » Sáb Nov 10, 2012 17:52
- 4 Respostas
- 2057 Exibições
- Última mensagem por e8group

Sáb Nov 10, 2012 18:46
Álgebra Elementar
-
- questão função
por sheila » Qui Set 06, 2007 22:37
- 4 Respostas
- 7720 Exibições
- Última mensagem por admin

Ter Set 11, 2007 16:39
Funções
-
- Questão de Funçao
por kael » Qui Mar 05, 2009 16:30
- 4 Respostas
- 2854 Exibições
- Última mensagem por Molina

Sex Mar 06, 2009 12:47
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.