por Marcos07 » Seg Jun 30, 2014 01:57
f(x,y) =arctg (y/x) no ponto p =(x,y), sendo x ? 0 ?
Até compreendo a noção de derivadas parciais, mas tenho extrema dificuldade em exemplos que envolvam arco-tangente (arctg).
Editado pela última vez por
Marcos07 em Ter Jul 01, 2014 01:26, em um total de 1 vez.
-
Marcos07
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Jun 30, 2014 01:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Seg Jun 30, 2014 11:53
Primeiro vamos determinar a derivada de arctan .(As parciais são análoga ) .
Tome

, equivalentemente

.
Derivando-se com respeito a t , tem-se
![[tan( arctan(t))]' = tan'(arctan(t)) \cdot \phi'(t) = t' = 1 [tan( arctan(t))]' = tan'(arctan(t)) \cdot \phi'(t) = t' = 1](/latexrender/pictures/44e429ead90e1a579c47a69654e55565.png)
(no lado esquerdo vc derivada a função tangente e avalia ela em

) sse

sse
![[tan^2(arctan(t)) +1] \cdot phi'(t) = 1 [tan^2(arctan(t)) +1] \cdot phi'(t) = 1](/latexrender/pictures/55b4dd458d8f28e96b6a6ac1a512eece.png)
sse

sse

.
O raciocínio é análogo também p/ arcsin , arccos , ...., e todas funções as quais admite inversa .
Deixe

qualquer função real de uma variável . Agora derivamos pela regra da composta ,
![[\phi(g(t))]' = \phi'(g(t)) \cdot g'(t) = \frac{g'(t)}{1+[g(t)]^2} (*) [\phi(g(t))]' = \phi'(g(t)) \cdot g'(t) = \frac{g'(t)}{1+[g(t)]^2} (*)](/latexrender/pictures/5921beeb29fc2fe73238f0899abf8db9.png)
.
No caso de funções reais de duas variáveis ou mais , a regra acima é verdadeira , pois se

. Para cada

,fixamos

sobre todos índices distintos de i entre 1 e n e fazemos

variar-se .
Podemos definir uma função real

de uma variável a qual depende de x_i ( suponha que classe C^1 , diferenciável ) . Temos

. Logo , derivar-se parcialmente

com respeito à

corresponde a derivar via regra da cadeia a expressão

xom respeito à x_i . Portanto a fórmula (*) é válida .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Marcos07 » Seg Jun 30, 2014 15:03
Muito obrigado, fico extremamente grato! Me salvou. Explicação perfeita. Valeu!!!
-
Marcos07
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Jun 30, 2014 01:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Derivadas parciais e ponto crítico
por Mell » Dom Jul 07, 2013 10:24
- 1 Respostas
- 1815 Exibições
- Última mensagem por hygorvv

Seg Jul 08, 2013 07:11
Cálculo: Limites, Derivadas e Integrais
-
- [Funções diferenciáveis] em um ponto indicado.
por Marcos07 » Ter Jul 01, 2014 01:55
- 1 Respostas
- 1076 Exibições
- Última mensagem por Man Utd

Qua Jul 02, 2014 22:00
Cálculo: Limites, Derivadas e Integrais
-
- DERIVADAS PARCIAIS e continuidade - função é diferenciável?
por inkz » Seg Nov 26, 2012 20:37
- 3 Respostas
- 5842 Exibições
- Última mensagem por MarceloFantini

Ter Nov 27, 2012 00:01
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADAS PARCIAIS] Função definida por partes
por Sohrab » Dom Mai 26, 2013 17:13
- 0 Respostas
- 1320 Exibições
- Última mensagem por Sohrab

Dom Mai 26, 2013 17:13
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas Parciais de função de uma variável real
por Sohrab » Dom Mai 26, 2013 23:16
- 0 Respostas
- 1047 Exibições
- Última mensagem por Sohrab

Dom Mai 26, 2013 23:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.