por natanaelskt » Dom Jun 29, 2014 13:02
Estou com dúvida neste exercício,na verdade nem sei como começar a fazer. me ajudem ai galera. postei o exercício em anexo. mas já to começando a aprender o látex. mas minhas provas tá perto,por isso to postando até ficar bom no látex.
tem um outro parecido com este que também não sei como começar a fazer. irei postar este também. alguém poderia me indicar um livro que tem exercícios resolvidos de cálculo I? eu precisava de um livro com exercícios difíceis resolvidos. eu acho tenho listas com exercícios daora para a prova,mas estão sem respostas. e não consigo fazer a maioria,por isso to postando aqui.
- Anexos
-

-
natanaelskt
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Seg Mar 11, 2013 15:06
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Dom Jun 29, 2014 14:21
Segue direto da definição (tome f(x) = polinômio dado ) .Então ,

.Onde :
^k}{k!} p_5(x;0) = \sum_{k=0}^5 \frac{D^k [f (0)](x-0)^k}{k!}](/latexrender/pictures/cb34c16138db6fb1cc52543c3a2ce77c.png)
e

pode ser computado de diversas formas (conheço duas : Forma Lagrange e Forma Cauchy , pode google p/ ver )
Exemplo :

(Teorema binomial )
Dem. (Usando Taylor polinômio + erro associado pela forma Lagrange)
Defina

. (

)
Podemos escrever (vide def. livros de análise numérica )
![f_n(x) = \sum_{k=0}^{n} \frac{D^k[f_n(0)] (x-0)^k}{k!} + R_n(x;0) = f_n(x) = \sum_{k=0}^{n} \frac{D^k[f_n(0)] (x-0)^k}{k!} + R_n(x;0) =](/latexrender/pictures/a1ba734966359352e7e3eee4456c5006.png)
.
Note que
(...)
Expressão geral : (k= 0 ,1,2,3,...,n) :
Mas ,
Logo ,

o que implica que

.
Assim , obtemos

.
Mas, qualquer derivada de ordem superiores ao grau

do polinômio relativo ao mesmo é constante igual a zero , então pela forma de Lagrange temos

e o resultado segue .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por natanaelskt » Qua Jul 02, 2014 02:08
Obrigado,santhiago!
-
natanaelskt
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Seg Mar 11, 2013 15:06
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [polinômio de taylor] - Dúvida sobre o exercício
por natanaelskt » Ter Jul 08, 2014 11:41
- 0 Respostas
- 1657 Exibições
- Última mensagem por natanaelskt

Ter Jul 08, 2014 11:41
Cálculo: Limites, Derivadas e Integrais
-
- Polinomio de taylor - Dúvida sobre o erro.
por natanaelskt » Seg Jun 23, 2014 18:55
- 0 Respostas
- 1608 Exibições
- Última mensagem por natanaelskt

Seg Jun 23, 2014 18:55
Cálculo: Limites, Derivadas e Integrais
-
- polinomio de taylor
por ezidia51 » Ter Set 24, 2019 00:09
- 6 Respostas
- 5783 Exibições
- Última mensagem por ezidia51

Qua Set 25, 2019 23:49
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo 1] Polinômio de Taylor
por LuisLemos » Seg Ago 01, 2016 22:36
- 1 Respostas
- 3313 Exibições
- Última mensagem por Cleyson007

Ter Ago 02, 2016 12:40
Cálculo: Limites, Derivadas e Integrais
-
- Polinômio de Taylor de ordem 2
por Maisa_Rany » Seg Nov 19, 2018 16:53
- 2 Respostas
- 7945 Exibições
- Última mensagem por Maisa_Rany

Ter Nov 20, 2018 16:26
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.