por Janoca » Ter Jun 24, 2014 17:08
Nessa questão o problema foram as letras b, d ,e. Acredito q a letra a e c estão corretas.
Preciso entender o comportamento dessa equação.
A posição de uma partícula que se desloca ao longo do eixo x varia com o tempo segundo a equação

onde

e k são constantes estritamente positivas.
a) Qual a velocidade no instante t?
resposta:

b) Com argumentos físicos, justifique a afirmação: "a função é estritamente crescente".
c) Qual a aceleração no instante t?
resposta:

d) Com argumentos físicos, justifique a afirmação: " o gráfico da função tem a concavidade voltada para baixo".
e) Calcule o

.
-
Janoca
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 06, 2014 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por Janoca » Ter Jun 24, 2014 18:45
Eu ja calculei o Limite da letra e, segue abaixo:

, resta saber as alternativas b e d
-
Janoca
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 06, 2014 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivadas - Velocidade e Aceleração
por Fabio Cabral » Ter Jun 14, 2011 14:49
- 1 Respostas
- 4349 Exibições
- Última mensagem por carlosalesouza

Ter Jun 14, 2011 15:40
Cálculo: Limites, Derivadas e Integrais
-
- Derivada - Taxa de variação - velocidade
por emanes » Qua Out 17, 2012 11:10
- 1 Respostas
- 3842 Exibições
- Última mensagem por young_jedi

Qua Out 17, 2012 11:50
Cálculo: Limites, Derivadas e Integrais
-
- Integral de uma Aceleração
por Atirador » Sáb Nov 18, 2017 18:36
- 0 Respostas
- 5230 Exibições
- Última mensagem por Atirador

Sáb Nov 18, 2017 18:36
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais] Problema com aceleração
por MrJuniorFerr » Sáb Nov 10, 2012 20:19
- 4 Respostas
- 3106 Exibições
- Última mensagem por young_jedi

Sáb Nov 10, 2012 21:37
Cálculo: Limites, Derivadas e Integrais
-
- [Urgente] Integrar uma aceleração dada
por grey » Qua Fev 15, 2017 19:08
- 1 Respostas
- 2088 Exibições
- Última mensagem por adauto martins

Qui Fev 16, 2017 17:12
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.