• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indução Matemática

Indução Matemática

Mensagempor leticiapires52 » Ter Jun 17, 2014 10:55

A indução matemática é uma ferramenta que permite estabelecer verdades matemáticas válidas sobre subconjuntos infinitos de números naturais, isto é, trata de provar que uma sentença aberta é verdadeira para um certo, então para verificar se o princípio é valido o que deve ser feito?
leticiapires52
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qua Fev 12, 2014 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Indução Matemática

Mensagempor e8group » Qui Jun 19, 2014 14:19

A ideia é ... dada uma propriedade P(n) a qual é verdadeira para n = 1 ,você supõe que para um n arbitrário P(n) é verdadeira e com base nesta suposição mostra que P(n+1) também é verdadeira . Ou seja, você está dizendo que \Omega  = \{ n \in \mathbb{N} ;      P(n) \} = \mathbb{N} , pois
1 \in  \Omega e n \in \Omega (Hipótese ) \implies n+1 \in \Omega implicando \mathbb{N} \subset  \Omega .(Se o todo é sempre maior que qualquer uma de suas partes e esta é maior o todo ; logo só pode ser \mathbb{N} = \Omega )

Para começar a brincadeira ...comece com

\Omega = o subconjunto dos números naturais n para os quais 1+ \hdots + n = \frac{(n+1)n}{2} ,i.e, \Omega  = \{ n \in \mathbb{N}  ;   P(n) : \quad  1+ \hdots + n = \frac{(n+1)n}{2} \} .

Deve-se fazer o seguinte :

(i) Verificar que 1 pertence a \Omega ,i.e , checkar se P(1) é verdadeiro .

(ii) Sendo P(1) verdadeiro ; assuma que n \in  \Omega ,i.e, P(n) é verdadeiro .

(iii) Mostre que P(n) \implies P(n+1)  (\iff n \in \Omega \implies n+1 \in \Omega ) .

Há centenas de exemplos aqui no fórum bem como em outros fóruns e sites .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.