• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral, achar a área da região entre as curvas

Integral, achar a área da região entre as curvas

Mensagempor Janoca » Sex Jun 06, 2014 17:24

Por favor, ajudem-me responder essa questão, não consigo resolve-la.

Se x e y são medidos em metros, a área da região entre as curvas x^2+y^2=25 e x^2+y^2=16 é igual a quanto? tento resolver, mas não da certo.
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Integral, achar a área da região entre as curvas

Mensagempor alienante » Dom Jun 15, 2014 13:24

{A}_{total}={A}_{maior}-{A}_{menor}=\int_{-5}^{5}\,2\,\sqrt[]{25-x^2}\,dx\,-\,\int_{-4}^{4}2\,\sqrt[]{16-x^2}\,dx=25\pi\,-\,16\pi=\,9\pi
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integral, achar a área da região entre as curvas

Mensagempor Janoca » Dom Jun 15, 2014 20:30

Boa noite Alienante, em relação a esta questão me ensinaram desta maneira, está correto?


\int_{5}^{4}\sqrt[]{25-x^2}dx + \int_{0}^{4}(\sqrt[]{25-x^2}-\sqrt[]{16-x^2})dx
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Integral, achar a área da região entre as curvas

Mensagempor alienante » Dom Jun 15, 2014 20:51

muito incompleto.Essa integral só representa um quarto da área total, ao meu ver. Veja se observarmos os intervalos de integração de[0,5] ,do jeito que foi montado,esse calculo só nos mostra a área do primeiro quadrante, ignorando completamente os segundo,terceiro e quarto quadrantes.
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integral, achar a área da região entre as curvas

Mensagempor Janoca » Dom Jun 15, 2014 21:16

em relação a sua resposta, pq vc coloca o dois na frente das raizes?
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Integral, achar a área da região entre as curvas

Mensagempor alienante » Dom Jun 15, 2014 21:42

Porque considero tanto as áreas do primeiro e segundo quadrantes quanto as do terceiro e do quarto. Que por sinal valem a mesma coisa que as do primeiro e segundo quadrantes.
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.