• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função contínuas com derivadas de todas as ordens contínuas

Função contínuas com derivadas de todas as ordens contínuas

Mensagempor Janoca » Dom Jun 15, 2014 20:40

Questão:
Seja f(X) uma função contínua com derivadas de todas as ordens contínuas. Sabendo-se que f(3)>0, f'(3)<0, f''(3)>0, pode -se afirmar:
a) 3 é um ponto de mínimo local de f;
b) 3 é um ponto de inflexão de f;
c) 3 é um ponto de máximo local de f;
d) f é crescente em um intervalo à volta de 3;
e)f é decrescente em um intervalo à volta de 3.


fiquei confusa nesta questão, gostaria de entender o pq de cada alternativa, tanto o porque q cada alternativa q está errada e o pq da unica alternativa q está correta.
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Função contínuas com derivadas de todas as ordens contín

Mensagempor alienante » Dom Jun 15, 2014 21:09

a)Falsa, pois para o x=3 ser um ponto de máximo/minimo ele deve ser um ponto critico logo f´(3)=0 oque não é o caso.
b)Falsa, porque para x=3 ser um ponto de inflexão o f''(3)=0 e sabemos que não é
c)Falsa, pelo mesmo motivo da letra a)
d)Falsa, pois o f'(3)<0 oque implica que o intervalo(3-\delta,3+\delta) para um delta pequeno,pelo menos, é decrescente.
e)Verdadeira, porque f'(3)<0 o que implica que o intervalo (3-\delta,3+\delta) para um delta pequeno,pelo menos, é decrescente.
Editado pela última vez por alienante em Dom Jun 15, 2014 21:47, em um total de 1 vez.
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Função contínuas com derivadas de todas as ordens contín

Mensagempor Janoca » Dom Jun 15, 2014 21:12

Obrigada alienante, tava perdida em relação a esse ponto de inflexão.
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: