por Janoca » Dom Jun 15, 2014 20:40
Questão:
Seja f(X) uma função contínua com derivadas de todas as ordens contínuas. Sabendo-se que f(3)>0, f'(3)<0, f''(3)>0, pode -se afirmar:
a) 3 é um ponto de mínimo local de f;
b) 3 é um ponto de inflexão de f;
c) 3 é um ponto de máximo local de f;
d) f é crescente em um intervalo à volta de 3;
e)f é decrescente em um intervalo à volta de 3.
fiquei confusa nesta questão, gostaria de entender o pq de cada alternativa, tanto o porque q cada alternativa q está errada e o pq da unica alternativa q está correta.
-
Janoca
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 06, 2014 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por alienante » Dom Jun 15, 2014 21:09
a)Falsa, pois para o x=3 ser um ponto de máximo/minimo ele deve ser um ponto critico logo f´(3)=0 oque não é o caso.
b)Falsa, porque para x=3 ser um ponto de inflexão o f''(3)=0 e sabemos que não é
c)Falsa, pelo mesmo motivo da letra a)
d)Falsa, pois o f'(3)<0 oque implica que o intervalo

para um delta pequeno,pelo menos, é decrescente.
e)Verdadeira, porque f'(3)<0 o que implica que o intervalo

para um delta pequeno,pelo menos, é decrescente.
Editado pela última vez por
alienante em Dom Jun 15, 2014 21:47, em um total de 1 vez.
-
alienante
- Usuário Dedicado

-
- Mensagens: 43
- Registrado em: Seg Nov 25, 2013 19:18
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Janoca » Dom Jun 15, 2014 21:12
Obrigada alienante, tava perdida em relação a esse ponto de inflexão.
-
Janoca
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 06, 2014 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Infinito] Todas as operações possíveis!
por Jhenrique » Sáb Set 08, 2012 14:57
- 3 Respostas
- 4260 Exibições
- Última mensagem por MarceloFantini

Dom Set 09, 2012 17:06
Cálculo: Limites, Derivadas e Integrais
-
- [Todas as Resoluções - IME 2013-2014]
por raimundoocjr » Qua Out 16, 2013 18:38
- 0 Respostas
- 8717 Exibições
- Última mensagem por raimundoocjr

Qua Out 16, 2013 18:38
Sites Recomendados / Outras Indicações
-
- P.A(Errei todas as resoluçoes desses exercicios de P.A)
por Dalila » Sex Nov 14, 2008 17:33
- 2 Respostas
- 9305 Exibições
- Última mensagem por Cleyson007

Qua Jun 10, 2009 13:06
Progressões
-
- Funções contínuas
por Rafinha_84 » Dom Fev 23, 2014 20:57
- 1 Respostas
- 1493 Exibições
- Última mensagem por Russman

Seg Fev 24, 2014 00:24
Funções
-
- [Funções Continuas] Calculo III
por Marcos07 » Seg Jun 30, 2014 14:42
- 2 Respostas
- 2002 Exibições
- Última mensagem por Marcos07

Ter Jul 01, 2014 01:21
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.