• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função contínuas com derivadas de todas as ordens contínuas

Função contínuas com derivadas de todas as ordens contínuas

Mensagempor Janoca » Dom Jun 15, 2014 20:40

Questão:
Seja f(X) uma função contínua com derivadas de todas as ordens contínuas. Sabendo-se que f(3)>0, f'(3)<0, f''(3)>0, pode -se afirmar:
a) 3 é um ponto de mínimo local de f;
b) 3 é um ponto de inflexão de f;
c) 3 é um ponto de máximo local de f;
d) f é crescente em um intervalo à volta de 3;
e)f é decrescente em um intervalo à volta de 3.


fiquei confusa nesta questão, gostaria de entender o pq de cada alternativa, tanto o porque q cada alternativa q está errada e o pq da unica alternativa q está correta.
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Função contínuas com derivadas de todas as ordens contín

Mensagempor alienante » Dom Jun 15, 2014 21:09

a)Falsa, pois para o x=3 ser um ponto de máximo/minimo ele deve ser um ponto critico logo f´(3)=0 oque não é o caso.
b)Falsa, porque para x=3 ser um ponto de inflexão o f''(3)=0 e sabemos que não é
c)Falsa, pelo mesmo motivo da letra a)
d)Falsa, pois o f'(3)<0 oque implica que o intervalo(3-\delta,3+\delta) para um delta pequeno,pelo menos, é decrescente.
e)Verdadeira, porque f'(3)<0 o que implica que o intervalo (3-\delta,3+\delta) para um delta pequeno,pelo menos, é decrescente.
Editado pela última vez por alienante em Dom Jun 15, 2014 21:47, em um total de 1 vez.
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Função contínuas com derivadas de todas as ordens contín

Mensagempor Janoca » Dom Jun 15, 2014 21:12

Obrigada alienante, tava perdida em relação a esse ponto de inflexão.
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}