• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Taxas Relacionadas

Taxas Relacionadas

Mensagempor RonnieAlmeida » Qui Mai 22, 2014 16:58

Uma partícula move-se ao longo da curva y = 2sen\left(\pi x/2 \right). Quando a partícula passa pelo ponto (1/3; 1), sua coordenada x cresce a uma taxa de \sqrt[2]{10} cm/s. Quão rápido a distância da partícula à sua origem está variando nesse momento ?
RonnieAlmeida
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Mai 22, 2014 16:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Taxas Relacionadas

Mensagempor alienante » Dom Jun 15, 2014 07:59

Olha a taxa de variação do deslocamento é\frac{ds}{dt}=\frac{dx}{dt}{| \right|}_{x=x0}+\frac{dy}{dt}{| \right|}_{y=y0}.Como\frac{dx}{dt}{| \right|}_{x=\frac{1}{3}}=\sqrt[]{10}cm/s\,\Rightarrow\,\frac{dy}{dt}{| \right|}_{y=1}=2cos\left(\frac{\pi x}{2} \right)\frac{\pi}{2}\frac{dx}{dt}{| \right|}_{x=\frac{1}{3}}=2cos(\frac{\pi}{6})\frac{\pi}{2}\cdot\sqrt[]{10}=\frac{\sqrt[]{30}\pi}{2}cm/s\,\Rightarrow\,\frac{ds}{dt}=\sqrt[]{10}+\frac{\sqrt[]{30}\pi}{2}=\frac{\sqrt[]{10}\left(2+\pi\sqrt[]{3} \right)}{2}cm/s
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}