• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES] Limites com duas raízes

[LIMITES] Limites com duas raízes

Mensagempor Atom » Dom Mai 25, 2014 20:22

Como resolve limites quando eles tem duas raízes?

Por exemplo:

lim quando x tende à 0 de f(x), f(x)= [(raíz de x+3) - (raíz de 3)] / x. Resposta: raíz de 2 / 4

ou

lim quando x tende à 1 de f(x), f(x)= [(raíz de x+3) - (2)] / (raíz de x) - (1). Resposta: 1 / 2

Valeu!
Atom
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mai 25, 2014 20:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITES] Limites com duas raízes

Mensagempor e8group » Dom Mai 25, 2014 21:59

Por favor ,utilize LaTeX . (Sem impor condições em a e b deixo a vc ) Pense qual a relação entre a -b e \sqrt{a} - \sqrt{b} . Você sabe fatorar a^2 -b^2 ? Se sim também saberá \sqrt{a} - \sqrt{b} .Dica :

a= (\sqrt{a})^2  , b = (\sqrt{b})^2 . Então a-b = (\sqrt{a})^2 - (\sqrt{b})^2 =  (\sqrt{a} - \sqrt{b})(\sqrt{a} +\sqrt{b}) e assim \frac{a-b}{\sqrt{a} +\sqrt{b}} = \sqrt{a} -\sqrt{b} .

Entendeu porque eu disse que se você souber fatorar a^2 -b^2 vc tbm consegue para potencias de 2 inversa . Note que este resultado também é obtido por simplesmente multiplicar pelo conjugado . OK, se tivéssemos diferenças de raiz cubica ,novamente aqui lhe pergunto , vc sabe fatorar a^3 - b^3 ? Se sim , também saberá para a^{1/3} -b^{1/3} . Mesma dica : a = (a^{1/3})^3  , b = (b^{1/3})^3 .

E podemos generalizar ....

Se sabemos fatorar a^n - b^n também saberemos a^{1/n} - b^{1/n} , pois , a = (a^{1/n})^n , b = (b^{1/n})^n .

Entendeu ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.