• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação exponencial ]

[Equação exponencial ]

Mensagempor Thais Camerino » Dom Mai 25, 2014 20:51

Olá!
Queria pedir ajuda para o raciocínio deste tipo d equação.
Eu já vi que neste caso tem q se colocar o 3^x^-1 em evidencia.. mas não percebo, e este tipo de questão já vi varias vezes mas não sei pq é feito desta maneira..

3^x-1-3^x+3^x+1+3^x+2 = 3063^x^-^1-3^x+3^x^+^1+3^x^+^2 = 306

3^x^-^1(1-3+3^2+3^3) = 306 (Porque tem aquele 1 dentro dos parênteses? como ficou assim?)


3^x^-^1.34 = 306 (Porque 34? )


Se alguêm pudesse explicar-me, ficaria grata! (:
Thais Camerino
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Abr 27, 2014 00:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Design
Andamento: cursando

Re: [Equação exponencial ]

Mensagempor e8group » Dom Mai 25, 2014 21:34

Você quer dizer 3^{x-1} -3^x+ 3^{x+1} +3^{x+2} = 306 ? Se sim , note que podemos multiplicar a eq. por 1, vejamos que 1=3^0 =  3^{x-1} \cdot 3^{-(x -1)}} e

3^{x-1} -3^x+ 3^{x+1} +3^{x+2} = 1 \cdot (3^{x-1} -3^x+ 3^{x+1} +3^{x+2}) =  3^{x-1}  \cdot 3^{-(x -1)}} ((3^{x-1} -3^x+ 3^{x+1} +3^{x+2}))

que devido propriedade associativa (ab)c = a(bc) + a distributiva a(b+c) = ab + ac , resulta

3^{x-1} -3^x+ 3^{x+1} +3^{x+2} =  3^{x-1} (3^{-(x -1)}} \cdot 3^{x-1} - 3^{-(x -1)}} \cdot 3^{x} + 3^{-(x -1)}} \cdot 3^{x+1}+ 3^{-(x -1)}} \cdot 3^{x+2}   ) .

Dentro do parêntesis , você conserva a base e soma os expoentes e obtêm aquilo que você postou , e somando estes termos obterá 34 .

Entendeu ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Equação exponencial ]

Mensagempor Thais Camerino » Seg Mai 26, 2014 15:33

santhiago escreveu:Você quer dizer 3^{x-1} -3^x+ 3^{x+1} +3^{x+2} = 306 ? Se sim , note que podemos multiplicar a eq. por 1, vejamos que 1=3^0 =  3^{x-1} \cdot 3^{-(x -1)}} e

3^{x-1} -3^x+ 3^{x+1} +3^{x+2} = 1 \cdot (3^{x-1} -3^x+ 3^{x+1} +3^{x+2}) =  3^{x-1}  \cdot 3^{-(x -1)}} ((3^{x-1} -3^x+ 3^{x+1} +3^{x+2}))

que devido propriedade associativa (ab)c = a(bc) + a distributiva a(b+c) = ab + ac , resulta

3^{x-1} -3^x+ 3^{x+1} +3^{x+2} =  3^{x-1} (3^{-(x -1)}} \cdot 3^{x-1} - 3^{-(x -1)}} \cdot 3^{x} + 3^{-(x -1)}} \cdot 3^{x+1}+ 3^{-(x -1)}} \cdot 3^{x+2}   ) .

Dentro do parêntesis , você conserva a base e soma os expoentes e obtêm aquilo que você postou , e somando estes termos obterá 34 .

Entendeu ?


É sim! Hum, eu entendi individualmente mas não como um todo :s

Principalmente a transição da primeira parte para a segunda.. tentei fazer na conta q vc postou, fazendo a distributiva nos expoentes mas saiu uma coisa absurda. Não tou sabendo fazer
Thais Camerino
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Abr 27, 2014 00:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Design
Andamento: cursando

Re: [Equação exponencial ]

Mensagempor e8group » Seg Mai 26, 2014 22:42

Ok.

Nós temos que

3^{x-1} - 3^x + 3^{x+1} + 3^{x+2}  =  3^{x-1} \cdot 3^{1-x} \left( 3^{x-1} - 3^x + 3^{x+1} + 3^{x+2} \right) \iff 3^{x-1} - 3^x + 3^{x+1} + 3^{x+2} =  3^{x-1} \left( 3^{1-x}\left[ 3^{x-1} - 3^x + 3^{x+1} + 3^{x+2} \right] \right)

Agora , aplicando a distributividade em relação a soma ,

3^{1-x}\left[ 3^{x-1} - 3^x + 3^{x+1} + 3^{x+2} \right] =   3^{1-x} \cdot 3^{x-1} - 3^{1-x} \cdot 3^{x} + 3^{1-x} \cdot 3^{x+1} + 3^{1-x} \cdot 3^{x+2} . Utilizando a propriedade a^m \cdot a^n = a^{m+n} ,segue

3^{1-x} \cdot 3^{x-1} - 3^{1-x} \cdot 3^{x} + 3^{1-x} \cdot 3^{x+1} + 3^{1-x} \cdot 3^{x+2}  =  3^{0}  -3^{1} + 3^{2} + 3^{3}  =   1 - 3 + 9 + 27  =  34 .

Entendeu ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.