• Anúncio Global
    Respostas
    Exibições
    Última mensagem

MMC com letras

MMC com letras

Mensagempor IsadoraLG » Qua Mai 21, 2014 00:24

O chato é que eu já fiz isso algum dia, mas não consigo mais lembrar como fazer o MMC com letras!

Como no caso deste exercício:

(UFRGS) Sendo n > 1, a expressão \frac{1}{\sqrt[]{n}} - \frac{1}{\sqrt[]{n}+1} é equivalente a:
A) \frac{n-\sqrt[]{n}}{n(n-1)}

B) \frac{\sqrt[]{n}-1}{n(n-1)}

C) \frac{\sqrt[]{n}}{n+\sqrt[]{n}}

D) \frac{\sqrt[]{n}}{n}

E) \frac{\sqrt[]{n}-n}{n+1}

Resposta: A.
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado

Re: MMC com letras

Mensagempor Russman » Qua Mai 21, 2014 19:40

O MMC entre \sqrt{n} e \sqrt{n} + 1 é \sqrt{n}(\sqrt{n} + 1).

Os estudantes de matemática, em geral, apresentam uma certa dificuldade quanto a efetuar somas de frações em virtude de, além de (na maioria dos casos) não compreenderem muito bem o conceito envolvido no MMC, ter preguiça de calculá-lo. De fato, é um cálculo extenso. Eu mesmo nunca o faço para efetuar frações. Ao invés de tomar o denominador da soma das frações como o MMC dos denominadores das parcelas o tomo, simplesmente, pelo produto dos denominadores. Não há absolutamente perda nenhuma de generalidade nesse método.

De fato, para quaisquer Reais a,b,c \neq 0 e d \neq 0 é verdade que

\frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}.

Tente resolver assim, se preferir. Neste caso específico não tem graça pois o MMC coincide com o produto dos denominadores. Isto acontecerá sempre que os denominadores forem primos entre si.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: MMC com letras

Mensagempor IsadoraLG » Qua Mai 21, 2014 21:28

Obrigada, sua explicação é muito clara!

Porém, enfrento mais dificuldades...

Continuei a fazer o exercício:

\frac{\sqrt[]{n}+1-\sqrt[]{n}}{\sqrt[]{n}(\sqrt[]{n}+1)}=   \frac{1}{\sqrt[]{n}(\sqrt[]{n}+1)}

A partir desse ponto, não entendi a continuação (tentei fazer, não consegui, vi a resolução, mas gostaria de entender):

=   \frac{1}{n+\sqrt[]{n}}

Depois desse passo, ocorre a racionalização, e estou tendo muita dificuldade para realizar as operações com as letras, sempre penso em algo diferente do resultado dado:

=   \frac{1}{n+\sqrt[]{n}}  .  \frac{n-\sqrt[]{n}}{n-\sqrt[]{n}}=   \frac{n-\sqrt[]{n}}{{n}^{2}-n}=   \frac{n-\sqrt[]{n}}{n(n-1)}
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?