por fcomex » Seg Mai 19, 2014 22:08
Caros,
Como resolvo essa adição de fração algébrica?

Fiquei hora em cima desse problema e não consegui resolver. Agradeço se puderem me ajudar.
-
fcomex
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Mai 19, 2014 21:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por Russman » Seg Mai 19, 2014 22:18
É só usar a propriedade

para c e d não nulos.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por fcomex » Seg Mai 19, 2014 23:54
Certo, desculpe mas não especifiquei melhor minha dificuldade. Já apliquei a propriedade e obtive:

e não consegui avançar mais. Como prossigo?
-
fcomex
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Mai 19, 2014 21:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por Russman » Ter Mai 20, 2014 00:20
Bom, você esta somando e a resposta é essa. O que eu vejo de
simplificação que se pode fazer é notar que

. Daí,

Mas, sabemos que

. Verifique! De fato, para quaisquer Reais

e

vale que

.
Assim,

se

Acho que era isso que você queria, certo?
Usando a propriedade da soma você também poderia chegar a esse resultado. Basta tentar dividir o polinômio cúbico obtido do numerador por

ou

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por fcomex » Ter Mai 20, 2014 00:48
É isso mesmo! Muito obrigado.
Amigo, não querendo abusar da boa vontade, não entendi bem como utilizar a propriedade da soma que vc indicou como forma alternativa. Pode me esclarecer?
Obrigado novamente.
-
fcomex
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Mai 19, 2014 21:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por Russman » Ter Mai 20, 2014 23:50
fcomex escreveu:É isso mesmo! Muito obrigado.
Amigo, não querendo abusar da boa vontade, não entendi bem como utilizar a propriedade da soma que vc indicou como forma alternativa. Pode me esclarecer?
Obrigado novamente.
Note que o numerador da fração obtida tem como raiz

. De fato,

Assim, você o pode dividir por

e obterá que

Mas também

. Daí,

Já o denominador sabemos que, já que o obtivemos a partir daí,

.
Portanto, a fração se torna

para

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Fração Algébrica
por Lucio » Qua Dez 21, 2011 07:48
- 3 Respostas
- 2038 Exibições
- Última mensagem por fraol

Qua Dez 21, 2011 22:31
Polinômios
-
- Fração algébrica
por LuizCarlos » Sex Abr 20, 2012 13:09
- 5 Respostas
- 2145 Exibições
- Última mensagem por Cleyson007

Sex Abr 20, 2012 17:44
Álgebra Elementar
-
- Re: Fração algébrica
por LuizCarlos » Sáb Abr 21, 2012 09:10
- 5 Respostas
- 2429 Exibições
- Última mensagem por DanielFerreira

Sáb Abr 21, 2012 16:44
Álgebra Elementar
-
- Fração algébrica
por LuizCarlos » Sáb Abr 21, 2012 19:04
- 6 Respostas
- 2677 Exibições
- Última mensagem por Russman

Sáb Abr 21, 2012 20:40
Álgebra Elementar
-
- Divisão de fração algébrica
por lucas7 » Seg Fev 21, 2011 18:09
- 3 Respostas
- 2297 Exibições
- Última mensagem por lucas7

Seg Fev 21, 2011 22:16
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.