por leha » Qui Dez 10, 2009 10:22
Ola pessoal tudo bem? Eu não esto conseguindo fazer este calculo alguem poderia me ajudar por favor? Abraço a todos
Ache o volume do sólido de revolução gerado pela rotação da curva a seguir em torno ao eixo
das abscissas:

-1,711< x < 1,711
Editado pela última vez por
leha em Sex Dez 11, 2009 08:30, em um total de 1 vez.
-
leha
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Ter Jun 09, 2009 20:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: informatica
- Andamento: cursando
por leha » Sex Dez 11, 2009 08:28
E ai pessoal pode me ajudar com esse calculo?
-
leha
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Ter Jun 09, 2009 20:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: informatica
- Andamento: cursando
por leha » Seg Dez 14, 2009 00:39
Bá pessoal voces são bucha heim. Po não podem me ajudar que sacanagem. Pelo amor de deus. Vamos lá uma ajuda somente.
-
leha
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Ter Jun 09, 2009 20:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: informatica
- Andamento: cursando
por leha » Seg Dez 14, 2009 13:44
Ohh pessoal então porque existe esse tal de forum se ninguem participa. Pelo amor de deus vamos colaborar e ajudar os outros. Assim desse jeito isso aqui vai ficar esquecido. que pouco vergonha
-
leha
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Ter Jun 09, 2009 20:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: informatica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Volume de sólido
por Manoella » Seg Fev 21, 2011 23:41
- 1 Respostas
- 2294 Exibições
- Última mensagem por LuizAquino

Ter Fev 22, 2011 11:38
Cálculo: Limites, Derivadas e Integrais
-
- volume de um sólido
por Andreza » Seg Nov 14, 2011 14:26
- 7 Respostas
- 8144 Exibições
- Última mensagem por Andreza

Sex Nov 25, 2011 10:05
Geometria Espacial
-
- volume de um sólido
por Priscila_moraes » Dom Dez 04, 2011 18:55
- 2 Respostas
- 2486 Exibições
- Última mensagem por LuizAquino

Dom Dez 04, 2011 19:56
Cálculo: Limites, Derivadas e Integrais
-
- volume de um sólido
por ah001334 » Ter Dez 20, 2011 10:47
- 1 Respostas
- 1668 Exibições
- Última mensagem por LuizAquino

Ter Dez 20, 2011 11:24
Cálculo: Limites, Derivadas e Integrais
-
- Volume do solido
por ivoski » Ter Ago 14, 2012 17:38
- 2 Respostas
- 2520 Exibições
- Última mensagem por ivoski

Qui Ago 16, 2012 22:52
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.