• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Resolução de limite] Teorema do Confronto

[Resolução de limite] Teorema do Confronto

Mensagempor nievag » Ter Mai 13, 2014 00:58

No livro de James Stewart a resposta é 5, alguém consegue provar isso através do teorema do confronto?
Imagem
nievag
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mai 13, 2014 00:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Resolução de limite] Teorema do Confronto

Mensagempor e8group » Ter Mai 13, 2014 10:50

P/a função seno avaliados em valores suficientemente pequenos , digamos \alpha , temos que sin(\alpha) \approx  \alpha . Este fato é evidente , do ponto de vista geométrico . Dá circunferência unitária vemos que o valor real de sin(\alpha) difere pouco de \alpha (compare \alpha com a projeção do mesmo sobre o eixo ) . Observe que para x grande (positivamente ou negativamente ) , a nossa expectativa é que sin(5/x^2)  \approx  5/x^2 isto nos leva a x^2 sin(5/x^2) \approx  5 . Quanto vale o limite ? Este limite tem alguma relação com o limite fundamental envolvendo o seno ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.