por andersontricordiano » Ter Mai 06, 2014 21:36
O prêmio de um concurso no valor de R$ 490.000,00 deverá ser divido de forma diretamente proporcional aos pontos obtidos pelos candidatos das três primeiras colocações. Considerando que o primeiro colocado fez 220, o segundo 150 e o terceiro 120 pontos, determine a parte do prêmio relativa a cada participante.
Respostas: R$ 176.000,00, R$ 120.000,00 e R$ 96.000,00, ( eu acho que essa resposta do gabarito está errada, pois eu não consigo chegar a ela .Ma se alguém conseguir por favor me ajude)
-
andersontricordiano
- Colaborador Voluntário

-
- Mensagens: 192
- Registrado em: Sex Mar 04, 2011 23:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Russman » Ter Mai 06, 2014 23:11
Bom, se

é o valor que o candidato deve receber em função do número

de pontos que fez e ambas quantidades são diretamente proporcionais deve existir uma constante

tal que

Supondo que o dinheiro do prêmio, que vou chamar de

, será totalmente dividido entre os ganhadores, temos

de onde

e, portanto, determinamos a constante de proporcionalidade

por

.
Aqui

é a soma dos pontos dos 3 candidatos.
Logo, cada candidato deve receber, respectivamente



Certamente o gabarito está errado. O primeiro motivo é que a soma dos valores ditos não é a quantia total do prêmio. O segundo é

. kk
Eu resolveria assim.
Editado pela última vez por
Russman em Ter Mai 06, 2014 23:21, em um total de 1 vez.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Russman » Ter Mai 06, 2014 23:12
.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- razões trigonométricas
por userawzsszwa » Sex Mai 07, 2010 00:45
- 6 Respostas
- 5967 Exibições
- Última mensagem por userawzsszwa

Sex Mai 07, 2010 20:19
Trigonometria
-
- Razões e Proporções
por Douglasfers » Ter Mai 20, 2014 20:25
- 1 Respostas
- 2341 Exibições
- Última mensagem por Desu

Qui Mai 22, 2014 20:51
Aritmética
-
- Expressão - Razões Trig.
por Apotema » Ter Nov 24, 2009 08:02
- 1 Respostas
- 3228 Exibições
- Última mensagem por thadeu

Ter Nov 24, 2009 11:39
Trigonometria
-
- razões equivalentes, me ajudem!
por zig » Dom Mai 08, 2011 14:02
- 4 Respostas
- 3849 Exibições
- Última mensagem por zig

Ter Mai 10, 2011 08:39
Sistemas de Equações
-
- Trigonometria - Relações entre razões trigonométricas
por METEOS » Seg Set 30, 2013 17:06
- 1 Respostas
- 1443 Exibições
- Última mensagem por Russman

Seg Set 30, 2013 17:41
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.