• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integração por decomposição

Integração por decomposição

Mensagempor lalmeida » Sex Mai 02, 2014 00:54

Gostaria de saber a solução de ? (x²- 2)²/x dx
lalmeida
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Mai 02, 2014 00:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integração por decomposição

Mensagempor e8group » Sex Mai 02, 2014 16:48

O integrando é escrito como razão de polinômios p(x)/q(x)  ,  p(x) = (x^2 -2)^2 = x^4 - 4x^2 + 4e q(x) = x . Temos deg(q) = 1 < deg(p) = 4 , então podemos dividir p por q , e obter

p(x)/q(x)  =  x^3 - 4x +  \frac{4}{x} . Já sabemos integrar polinômio e expressões sob forma A/(Bx +C) .Qual a resposta ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.