• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral

integral

Mensagempor ilane » Ter Abr 29, 2014 22:50

\int      e^(2x)   cos x dx


pessoal u achei uma resposta mais alguns colegas me auxiliaram que eu deveria resolver por partes
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral

Mensagempor alienante » Qua Abr 30, 2014 09:24

eu fiz por partes, não enxerguei outra forma mais simples pelo menos:\int_{}^{}{e}^{2x}cos(x)dx, chamando a=cos(x) , e db={e}^{2x}dx e usando o fato de que da=(-sin(x))dx e\int_{}^{}db=\frac{{e}^{2x}}{2}+c temos que(1)\left[ \int_{}^{}adb=ab-\int_{}^{}bda\rightarrow \int_{}^{}{e}^{2x}sin(x)dx=\frac{cos(x){e}^{2x}}{2}+\frac{1}{2} \int_{}^{}{e}^{2x}sin(x)dx, se chamarmos c=sin(x) e dd={e}^{2x}dx teremos:(2)\left[\int_{}^{}cdd=cd-\int_{}^{}ddc\rightarrow \int_{}^{}{e}^{2x}sin(x)dx=\frac{sin(x){e}^{2x}}{2}-\frac{1}{2}\int_{}^{}{e}^{2x}cos(x)dx, substituindo (2) em (1) teremos:\int_{}^{}{e}^{2x}cos(x)dx=\frac{cos(x){e}^{2x}}{2}+\frac{sin(x){e}^{2x}}{4}-\frac{1}{4}\int_{}^{}{e}^{2x}cos(x)dx\rightarrow \frac{5}{4}\int_{}^{}{e}^{2x}cos(x)dx=\frac{cos(x){e}^{2x}}{2}+\frac{sin(x){e}^{2x}}{4}+c\rightarrow \int_{}^{}{e}^{2x}cos(x)dx=\frac{2cos(x){e}^{2x}}{5}+\frac{sin(x){e}^{2x}}{5}+c
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: