por kath » Dom Abr 20, 2014 01:02
oi
gostaria que me ensinassem passo a passo como fazer o escalonamento de sistema com parâmetros
explicando-me esse abaixo:
-aplicar o escalonamento e discutir, em função do parâmetro real "a":
x+2y+az=4
x+3y-z=3
2x-y+z=2
resp: Se a ? -4/7 é compatível determinado, e se a=-4/7 é incompativel
-
kath
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Abr 18, 2014 02:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por e8group » Seg Abr 21, 2014 13:12
Trabalhe no sistema como

fosse um número fixo qualquer . A ideia é ... fixamos

. Dependo da escolha podemos ter solução única(compatível determinado) , mais de uma solução (compatível indeterminado ) ou sem solução (incompatível ) . Se você estudou um pouco de propriedades de Matrizes e determinantes , saberá que o sistema , que pode ser escrito na forma matricial

admitirá única solução quando a matriz

for inversível , caso a matriz não satisfaz esta condição , o sistema pode ser compatível indeterminado ou incompatível.
Além disso , sabemos que

admite inversa

.Portanto podemos impor que

e determinar qual valor de

. E depois fazer o estudo do sistema para cada valor encontrado , ele terá infinitas soluções ou nenhuma e logicamente o complementar destes valores

implicará sistema admite única solução .
Outra forma é escrever a matriz aumenta associada ao sistema , e executar as operações elementares necessárias para obter uma única solução . Ao longo do processo é bem provável ter que impor condições sobre

para tal fato ocorrer .
Exemplo , se vc tiver q divide a primeira linha por a obviamente

, se vc tiver que dividi por

obviamente

... e por aí vai .Quando terminar o processo , faça o estudo do sistema separadamente para estes valores de a =0 , - 5 ... E observe se o sistema é incompatível ou indeterminado .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [sistema linear homogeneo] Como resolver esse sistema
por amigao » Qua Jul 02, 2014 14:49
- 1 Respostas
- 3084 Exibições
- Última mensagem por Russman

Qua Jul 02, 2014 18:38
Álgebra Linear
-
- [Sistema linear] Sistema linear com constante
por smlspirit » Qui Jul 19, 2012 19:34
- 4 Respostas
- 5552 Exibições
- Última mensagem por Russman

Qui Jul 19, 2012 22:40
Sistemas de Equações
-
- [Sistema Linear] MACK-SP: Sistema de Equações
por ALF » Sex Ago 26, 2011 13:24
- 1 Respostas
- 4491 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 12:57
Sistemas de Equações
-
- Sistema linear
por kael » Ter Out 20, 2009 14:14
- 1 Respostas
- 2671 Exibições
- Última mensagem por kael

Ter Out 20, 2009 16:24
Sistemas de Equações
-
- Sistema Linear
por kael » Qua Out 21, 2009 13:43
- 1 Respostas
- 3635 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2009 15:26
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.